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Motivation

From last couple of lectures:

I Some energy interventions/policies have lower-than-expected savings

I In some cases, the interventions are not cost-effective, on average

I This is true even when we account for the social cost of carbon

Does this mean that we should abandon these types of policies?

I Not necessarily

I We’ve also seen that benefits (and sometimes costs) are highly heterogeneous

I A growing literature aims to understand if it is possible to target interventions to
individuals/households that are associated with higher benefits

I If yes, then we could potentially make the interventions much more cost-effective
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Theoretical Framework (Allcott and Kessler, 2019)
In the context of nudges:

max
x ,e

U(θ) = x + f̂ (e;α, γ) + (m − µe)

subject to: y ≥ x + epe

I x is a numeraire good; y is income

I f̂ perceived utility from consumption of energy e

I α is consumer heterogeneity

I γ incorporates behavioral biases, inattention, or lack of information

I (m − µe) is “moral utility”

I m is energy-independent (dis)utility from the nudges

I µ represents a “moral tax”

I pe is price of energy
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Theoretical Framework (Allcott and Kessler, 2019)

Now suppose that there are two potential scenarios:

I With nudges (θ1), and without nudges (θ0)

Let V (θN) denote consumer welfare. The effect of the nudge on consumer welfare can
then be written as:

∆V = V (θ1) − V (θ0) = −∆ẽpe + ∆f + ∆M

Effect on social welfare (W ):

∆W =

∫
∆V − φe∆ẽ dF (Θ) + ∆Π − Cn

φe = environmental externality ∆Π = retailer net revenues Cn = nudge

implementation cost
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Consumer Welfare
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Assessing Willingness-to-Pay
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Assessing Willingness-to-Pay
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Assessing Willingness-to-Pay
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Change in Energy Consumption
RCT, randomizing households that receive home energy reports
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Targeting Home Energy Reports

I Use results from RCT and survey to calibrate model of social welfare

I Counterfactual simulations, changing the homes that receive HER
I Baseline: 50% of homes, selected at random
I Opt-in design: only homes that wish to participate
I Target 50% of homes, based on energy savings
I Target 50% of homes, based on willingness-to-pay
I Target 50% of homes, based on welfare

Important:
For targeting, the authors rely on predictions of welfare

I Tried elastic net, random forests, and gradient forests

I Cross-validation to prevent overfitting

I Errors in the predictions decrease the benefits of the targeting approach
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Allcott and Kessler (2019) Targeting Results
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Gerarden and Yang (2022)

Still within the context of Home Energy Reports

I Employ method from Kitagawa and Tetenov (2018)

I Allows for heterogeneity in savings (conditional treatment effects)

I Results in “simple” treatment rules based on observable characteristics (e.g.,
income, house size, mean usage)

I Relies on estimates of savings from an RCT
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Treatment Rules
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Gerarden and Yang (2022) Targeting Results
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Christensen et al. (2021): “Decomposing the Wedge between Projected and Realized
Returns in Energy Efficiency Programs”

Ex-post evaluation of the Illinois Weatherization Assistance Program

We find:

1. Low realization rates, on average ∼ 50% of expected savings

2. Substantial heterogeneity in benefits

3. Modeling bias explains much of wedge between projected and realized savings

Implication: better modeling may increase cost-effectiveness by improving
allocation of funds
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Heterogeneity in the Illinois Weatherization Assistance Program
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Christensen et al. (2022) – Research Questions

Still within the context of the Illinois Weatherization Assistance Program

I Step 1: Using data from already weatherized homes, how accurately can we
predict, ex-ante, a home’s future savings?

I Step 2: What are gains from targeting?
I We compare allocating funds to the most cost-effective homes according to Step 1

versus according to the status quo engineering models

I Step 3: How much of the gains can be realized without detailed audit data?
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Weatherization Assistance Program

I Largest energy efficiency program in the US (over 8 million served since 1976)

I Qualified households: below 200% of poverty line, collect Disability or
Supplemental Security Income (SSI), or Temporary Assistance for Needy Families
(TANF)

I Qualified homes receive fully-subsidized “retrofits” such as:
I Wall insulation, attic insulation;
I Furnace repairs, or even full furnace replacements;
I Water heater repairs;
I Door and window replacements.
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Weatherization Assistance Program

I Funds allocated using modeling tools based on a set of accepted engineering
equations (e.g. US National Energy Audit Tool: NEAT)

I Successful applicant gets pre-treatment energy audit

I Audit measures inputs to DOE-approved prioritization software

I List of retrofits optimizes savings-to-investment ratio (SIR)

I Performed regardless of SIR: health and safety measures, excluded from our analysis
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Data and Setting

I Around 13 thousand low-income households from the Illinois Weatherization
Assistance Program (WAP)

I Program years 2009-2016

I Rich data on: energy audits, housing structure, demographics, contractor IDs

I Upgrades performed and their costs

I Engineering projections of savings

I Monthly electricity/gas consumption data collected from utilities serving the
whole state, excluding Chicago

I Weather data (min/max temp. and precipitation)

I Energy Prices

Energy Economics (UC3M) 19/34



Step 1 – Predicting Counterfactuals

Building on the Neyman-Rubin potential outcomes framework, let:

Yi (0) = home i ’s energy consumption if NOT treated
Yi (1) = energy consumption if TREATED
bi = Yi (1) − Yi (0) = energy savings from treatment

What we do, within an ex-ante framework:
I Use the available data to predict both Ŷi (1) and Ŷi (0)

I Predict ex-ante savings: b̂EAi = Ŷi (1) − Ŷi (0)
I We use machine learning (ML) for prediction

I Accounts for home/household characteristics, and weather

I Accommodates complex interactions and nonlinearities
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Benchmark for Comparison

I Compare the ex-ante savings to the ex-post estimates from Christensen et al.
(2021)

I In the 2021 paper, we use event-study estimates, leveraging all the data available
both pre- and post-treatment

I Data from not-yet-treated homes are used to predict untreated counterfactuals
I Ex-post savings: b̂EPi = Yi (1) − Ŷi (0)

I We consider these estimates as the “best we can get” given the available
information, thus we use them as the benchmark for comparison
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Cross-Validation Design

We use nested cross-validation to mimic the role of a program implementer

I They DO have outcome data from previously treated homes

I As well as home/households characteristics and predicted weather for both treated
and not-yet-treated (potential target) homes

I Do NOT have outcome data for the potential target homes

Cross-validation also reduces the bias in the estimation of out-of-sample errors
(Andrews, Kitagawa, and McCloskey, 2021; Varma and Simon, 2006).
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K-Fold Cross-Validation

I Assess the “validation set” prediction errors (ε̂i = b̂EPi − b̂EAi )

I The “best-performing” algorithm has the lowest mean squared error (MSE)

Energy Economics (UC3M) 23/34



Nested Cross-Validation
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Algorithms Considered

I Lasso, Ridge, and Elastic Net

I Gradient Boosted Trees

I Random Forests

I Neural Networks

Algorithm Performance
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Visual Inspection of Out-of-Sample Accuracy
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Monetizing the Predicted Savings

Estimates of home-specific net present benefits

NPBi =

Ti∑
t=1

[
b̂i × pt
(1 + r)t

]
i

− TotalCosti

b̂i : predicted energy savings for home i

pt : social costs of energy in year t

r : discount rate (DOE recommended 3%)

Ti : expected lifespan of retrofits (∼ 30 years)

TotalCosti : total costs of the retrofits for home i

Select projects where NPB > 0
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Step 2 – Can We Improve on Status Quo?

I Compare targeting homes with predicted NPB > 0 versus allocation according to
status quo engineering model

I Use observed or “ex-post” estimated savings to quantify realized effects
(Christensen et al., 2021)

I Informed by post-treatment data
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Predictions Based on Previous Homes Outperform Status Quo
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Step 3 – Do we need the energy audits for better targeting?

I It might be costly to audit every home that could potentially be treated

I We ask whether targeting can be effective even if we use only a subset of
“publicly available” variables

I Subset of variables:
I income, family size, householder age
I floor area, building vintage, number of rooms, number of stories, existence of attic,

type of heating system
I location of home (County)
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Targeting Without Detailed Audit Data
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Robustness Sensitivity

I Predicted versus observed weather

I Different discount rates (2%, 4%)

I Different retrofit lifespans (20 years , 40 years)
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Concluding Remarks

I Targeting funds to homes predicted to be cost effective according to historical
realized savings increases social net benefits of a dollar spent from $0.93 to $1.23.
I We find increased benefits even when targeting with a limited set of variables

I We focus on targeting at the home level

I Targeting measures within a given home could have larger benefits

I Audit and selection software could readily accommodate predictions based on
realized savings

I Resulting predictions could be fed into the back end of already established software

I Billing data only needed for subset of homes representative of those who qualify for
the program
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Concluding Remarks

I The framework presented in this paper may be useful in settings other than
residential energy efficiency

I Targeting can be especially powerful when limited funds need to be allocated
within programs that generate substantially heterogeneous benefits

I Other settings with recent advances in targeting:
I Youth employment programs (Davis and Heller, REStat 2020)
I Food assistance programs (Finkelstein and Notowidigdo, QJE 2019)
I Occupational safety and health inspections (Johnson et al., AEJ:Applied

Forthcoming)
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Variables Included I
Average Standard Deviation Full Model Subset

Demographics

Family Income ($) 16,754.27 10,091.63 X X

Family Size 2.68 1.65 X X

Female Householder (%) 0.68 0.47 X X

Householder Age 53.15 15.82 X X

Renter (%) 0.06 0.24 X X

County ID (Categorical) 43.95 26.04 X X

Housing Structure

Attic R-Value 11.43 10.96 X

Floor Area (sqft) 1450.3 622.8 X X

Pre-Retrofit Blower Door (CFM50) 3,648.79 1,786.18 X

Main Heat Type (Categorical) 2.25 1.15 X X

Main Heat Age 19.44 14.6 X

Main Heat Size (BTU) 76,735.14 41,939.71 X

Main Heat Operational (%) 0.83 0.38 X

Building Vintage (Categorical) 6 2.44 X X

Has Air-Conditioning (%) 0.01 0.11 X

Has Attic (%) 0.7 0.46 X X

Has Multiple Stories (%) 0.32 0.46 X X

Num. Bedrooms 2.76 0.98 X X

Num. Windows 15.12 5.4 X

Shielding Class (Categorical) 1.85 0.87 X

Operational Water Heater 0.99 0.12 X

Water Heater Setting (Categorical) 2.02 0.4 X
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Variables Included II

Average Standard Deviation Full Model Subset

Administrative Variables

Audit Month 6 3.4 X

Audit Year 2010 2.29 X

Retrofit Year 2011 2.21 X X

Costs ($) per Retrofit Categories

Air Conditioning 6.8 90.14 X

Air Sealing 296.78 287.45 X

Attic 930.71 714.49 X

Baseload 175.65 232.23 X

Door 341.58 360.11 X

Foundation 300.73 500.35 X

Furnace 1,352.84 1,179.08 X

General 99.3 488.31 X

Health and Safety 486.67 334.03 X

Wall Insulation 274.75 622.03 X

Window 668.82 890.98 X

Water Heater 138.02 229.82 X

Number of Homes in Sample 13,638 - - -
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Neural Network Layers

Layer 1: Feature Layer
input: (None,73)

output: (None,324)

Layer 2: Leaky-ReLU Layer, 20800 Param
input: (None,324)

output: (None,64)

Layer 3: Leaky-ReLU Layer, 2080 Param
input: (None,64)

output: (None,32)

Layer 4: Leaky-ReLU Layer, 528 Param
input: (None,32)

output: (None,16)

Layer 5: Linear Layer, 17 Param
input: (None,16)

output: (None,1)

Model Prediction
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Leaky-ReLU layers

For the leaky-ReLU layers, the f (·) function is non-linear. Specifically, the the output
of each neuron in the leaky-ReLU layer is:

y = f (βX ) =

{
βX if β · X ≥ 0

α ∗ βX otherwise.

α was set at 0.3;
an RMSprop optimizer with learning rate equal to 0.00009 is used to find the optimal
parameters of the neural network (Hinton, Srivastava, and Swersky, 2013), using mean
squared error as the loss function.
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Distributions of Prediction Errors – Non-Winter Months
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Distributions of Prediction Errors – Winter Months
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Prediction Errors by Usage Bins

back



Difference Between Post- and Pre-Treatment Prediction Errors
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Status Quo Predictions

I Engineering models to predict savings

I Equations relating energy consumption to weather, home, and household
characteristics

I Difficult to project impacts

I Multiple retrofits interacting

I Diverse buildings

I Often no access to energy consumption data
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Results with Observed Weather
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20-year lifespan
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40-year lifespan
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2% discount rate
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4% discount rate
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Max Benefit-Cost Ratios

30-year lifespan, 3% discount rate,

varying discount rates varying lifespans

2% 3% 4% 40 years 30 years 20 years

Full sample BCR (3,913 homes) 1.069 0.932 0.820 1.100 0.932 0.731

Max BCR, ex-post approach 1.457 1.362 1.306 1.477 1.362 1.252

Gains from ex-post targeting 0.388 0.430 0.486 0.378 0.430 0.522

Max BCR, ex-ante ML approach (full) 1.344 1.229 1.145 1.367 1.229 1.063

Gains from ex-ante targeting (full) 0.275 0.297 0.325 0.268 0.297 0.332

Max BCR, ex-ante ML approach (subset) 1.294 1.196 1.125 1.311 1.196 1.024

Gains from ex-ante targeting (subset) 0.225 0.264 0.305 0.211 0.264 0.293

N homes selected, ex-ante ML approach 2,175 1,685 1,189 2,303 1,685 779
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Performance Metrics for Some Algorithms Considered

Model ID Model Type Hyperparameters MSE (Treatment Effect) MSE (MMBtu) MSE (Pre, MMBtu) MSE (Post, MMBtu)

1 GradientBoosting boosting stages = 100 47.308 12.652 13.804 12.383

2 GradientBoosting boosting stages = 120 44.685 12.526 13.639 12.266

3 RandomForest number of trees = 20 72.722 13.323 14.336 13.086

4 RandomForest number of trees = 30, max depth = 4 279.469 16.171 19.468 15.400

5 RandomForest number of trees = 30 67.992 13.122 14.078 12.898

6 Lasso alpha = 1 365.241 19.466 25.483 18.059

7 Lasso alpha = 0.1 109.867 15.717 18.252 15.124

8 Lasso alpha = 0.01 58.700 14.610 16.949 14.063

9 Lasso alpha = 0.005 59.786 14.508 16.838 13.963
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Performance Metrics for Neural Networks

Fold 1 Test Set Fold 2 Test Set Fold 3 Test Set Fold 4 Test Set

Regularizer MSE (Treatment Effect) Regularizer MSE (Treatment Effect) Regularizer MSE (Treatment Effect) Regularizer MSE (Treatment Effect)

0.9, 0.9, 0.8 40.3097 0.7, 0.9, 0.8 40.3389 0.6, 0.8, 0.8 39.4183 0.7, 0.8, 0.8 40.8598

0.9, 1.0, 0.8 40.3184 0.7, 0.8, 0.9 40.7823 0.6, 1.0, 0.8 39.1401 0.7, 0.7, 0.8 40.9488

0.9, 0.9, 0.7 40.5537 0.7, 0.8, 0.7 40.1696 0.6, 0.9, 0.9 40.1263 0.7, 0.9, 0.9 41.4700

0.9, 0.9, 0.9 40.7879 0.7, 0.8, 0.6 40.2189 0.6, 0.9, 0.7 38.6978 0.7, 0.9, 0.7 40.2058
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