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Motivation
Is energy efficiency a “win-win” for climate policy?

Energy efficiency is at the core of CO2 mitigation strategies:
I EU’s Recovery and Resilience Facility:

I Germany: “€2.5 billion will be spent on a large-scale
renovation programme to increase the energy efficiency of
residential buildings.”

I Spain: “The plan supports the green transition through
investments of over €7.8 billion in the energy efficiency of
public and private buildings...”

I US Inflation Reduction Act of 2022:
I “$9 billion in consumer home energy rebate programs, focused

on low-income consumers, to electrify home appliances and for
energy efficient retrofits”

I “10 years of consumer tax credits to make homes energy
efficient and run on clean energy...”
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What is Energy Efficiency?

Source: (Allcott and Greenstone, 2012)
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So What is the Problem?

I Energy Efficiency Gap (Allcott and Greenstone, 2012;
Gerarden, Newell, and Stavins, 2017)

I Some investments in energy efficiency not happening in
absence of policy

I Some possible reasons:
I Market failures
I Modeling flaws
I Behavioral effects
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Market Failures and Energy Efficiency

I Innovation market failures
I R+D and learning effects
I Market power

I Information market failures
I Learning by using or experience goods
I Asymmetric information (lemons problem)
I Principal-agent incentive issues (owner/renter) (Myers, 2015)

I Capital market imperfections
I Energy market failures

I Pricing
I Externalities

Energy Economics (UC3M) 5/31



Introduction An Application Setting and Data Empirical Strategy Results Conclusion References

Modeling Flaws and Energy Efficiency

I Unobserved or understated adoption costs, including
unaccounted for product characteristics

I Overstated benefits of adoption, (e.g. due to inferior project
execution and/or poor policy design)

I Incorrect discount rates

I Heterogeneity across end users in the benefits and costs of
energy-efficiency
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Behavior and Energy Efficiency

(Covered in previous lecture)

I Prospect Theory

I Myopia (short-sightedness)

I Rebound Effect

I Peer Effects

I Inattentiveness and Salience

I Social Norms
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Wedge Between Projected and Realized Savings

Realized savings often fall short from what was expected

I Weatherization and home retrofits (Fowlie, Greenstone, and
Wolfram, 2018; Allcott and Greenstone, 2012)

I Appliance rebate programs (Houde and Aldy, 2014; Davis,
Fuchs, and Gertler, 2014)

I Building codes/efficient housing (Levinson, 2016; Davis,
Martinez, and Taboada, 2018; Bruegge, Deryugina, and
Myers, 2019)

Could mean carbon mitigation goals are much more expensive than
anticipated or will not be achieved
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An Application

I “Decomposing the Wedge Between Projected and
Realized Returns in Energy Efficiency Programs.” Peter
Christensen, Paul Francisco, Erica Myers, and Mateus Souza

I Decompose ‘performance wedge’: (1) engineering
measurement and model bias, (2) workmanship, and (3)
rebound effect

I Mechanisms affect policy implications
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Policy Implications

Decompose the performance wedge: mechanisms affect policy
implications

I Engineering models: analyze and calibrate these models

I Workmanship: are there market failures we can correct?

I Occupant behavior: train occupants to use equipment and
other nudges
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The Paper

I Estimate heterogeneity in savings and wedge using machine
learning: Weatherization Assistance Program (WAP)

I Largest U.S. energy efficiency program (over 7 million served
since 1976)

I Funds allocated using modeling tools employed for wide-range
of retrofit programs (i.e National Energy Audit Tool: NEAT)

I Quantify effects of major proposed channels: measure-specific
savings, contractor heterogeneity, rebound effect
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Data

I Around 9,000 low-income homes from the Illinois
Weatherization Assistance Program (WAP)

I Program years 2009-2016

I Rich data on: energy audits, housing structure, demographics,
upgrades performed, and job costs

I We know who performed the jobs in each home

I Engineering projections of savings

I Monthly electricity/gas consumption

I PRISM daily weather data
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Empirical Strategy

I Our setting constitutes an event study with staggered
adoption

I Use machine learning to recover heterogeneous treatment
effects

I Subtract our estimated effects from engineering projections
(wedge)

I Describe systematic heterogeneity in wedge to investigate
mechanisms
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An Event Study With Staggered Adoption
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Machine Learning Approach

I Machine learning for counterfactual predictions (Burlig
et al., 2020; Abadie, 2005)

I Use data from not-yet-treated homes to predict counterfactual
usage post-treatment

I Compare true usage vs. counterfactual to obtain effect of the
program

I Identifying assumption is parallel trends, similar to DID

I Not-yet-treated homes account for time-varying relationships
between usage and rich controls on for time, weather, house,
and households
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Why Machine Learning

I Flexibility to capture nonlinear relationship between housing
structure, weather and energy usage

I Efficient for recovering treatment effect heterogeneity

I Do not suffer from near-term bias (Souza, 2019)

I Chose ML algorithm based on lowest out-of-sample RMSE

I Highly flexible tree-based model (gradient boosted trees)

I Special concern about out-of-sample performance
I Cross-validation
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Illustration of a Regression Tree
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Illustration of 5-Fold Cross-Validation

Source: ML tutorial by Ethen Liu
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Predicting Counterfactuals
Machine learning predictions versus true energy usage
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Program Average Treatment Effects on Energy

Outcome: Percent Energy Savings Engineering Projections Machine Learning

WAP Treatment -0.2903∗∗∗ -0.1483∗∗∗

(0.0020) (0.0037)

Realization Rate .5108

Observations 22,394 142,327
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Empirical Strategy – decomposing the wedge

[b̂pit − b̂ml
it ] = α0 + ηj +

K∑
k=1

βkC
k
it +

G∑
g=1

γgX
g
it + εit

⇒ b̂pit are engineering projected savings

⇒ b̂ml
it are realized savings

⇒ C k
it are binned variable for K categories of program spending

(such as spending in Wall Insulation), and βk correlates those
variables with the performance wedge

⇒ X g
it are binned covariates related to housing structure and

demographics

⇒ ηj are contractor specific fixed effects
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Results – estimated Wedge by Wall Insulation spending
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Results – estimated Wedge by Furnace spending
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Results – estimated Wedge by Window spending
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Workmanship – Contractor Quality

I Regress savings on contractor fixed effects and controls?
I Requires no unobserved or uncontrolled for determinants of

savings – unlikely
I Some contractors may have been “lucky” in a given year

I Use contractor’s mean savings from previous year to isolate
variation in performance due to quality

I We assume that homes are unobservably easier to weatherize
“at random”, uncorrelated with contractors over time

I This is likely the case, since contractors receive work orders
based on a queue
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Contractor Quality Measure
Contractor quality can be defined as:

ηj = qj + εj

where ηj is observed quality, qj is true quality, and εj is an
idiosyncratic error

We estimate ηj based on:

I First Step: calculate average savings ηjy for homes served by
contractor j in year y

I Second Step: regressed ηjy on lagged savings plus other
controls

ηjy = α0 + δηjy−1 +
K∑

k=1

βkC
k
it +

G∑
g=1

γgX
g
it + εit ∀ t > ti ,

Use the above equation to predict η̂jy , as our measure of
contractor quality
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Simulation: Effect of Workmanship on the Wedge

Baseline “Best” Contractor Percentile

50th 75th 90th 95th

Avg. Pct. Point Wedge 15.357 15.406 12.871 10.452 8.806

(0.621) (0.638) (0.734) (0.977) (1.205)

Wedge Reduction 0.315% -16.190% -31.939% -42.658%

(1.599) (3.169) (5.623) (7.542)

Observations 84,404 84,404 84,404 84,404 84,404
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Rebound Effect

We explore one of the main behavioral channels which can affect
energy savings in this context: the rebound effect

I Households may increase thermostats after weatherization,
given the lower cost burden

I Recent evaluations suggest that rebound is close to 0.4oF
(Pigg et. al., 2014; Fowlie et. al. 2018)

I Our thought experiment: how does the rebound affect our
estimates of the performance wedge?
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Energy Consumption and Outdoor Temperature
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Simulation: Effect of Rebound on the Wedge – Results

Baseline Varying the balance point

Balance Point (oF) 61.8 61.6 61.4 61.2

Removed Rebound Effect (oF) 0 0.2 0.4 0.6

Average Percentage Point Savings -11.391 -11.874 -12.352 -12.824

(0.543) (0.542) (0.540) (0.539)

Savings Increase Compared to Baseline 4.246% 8.442% 12.585%

(0.198) (0.393) (0.585)

Average Percentage Point Wedge 15.098 14.619 14.140 13.673

(0.583) (0.581) (0.580) (0.579)

Wedge Reduction Compared to Baseline -3.177% -6.347% -9.443%

(0.090) (0.178) (0.261)

Observations 128,670 128,655 128,644 128,631
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Conclusions From Application

I We provide insight about how the engineering models are
biased in this context

I Overestimated savings imply that climate policies may be less
cost-effective than expected

I This does not mean that we should ignore energy efficiency

I Heterogeneity analysis finds that several homes indeed benefit
a lot from the program

I So there are opportunities to improve allocation of program
funds (Christensen, Francisco, Myers, Shao, and Souza, 2021)

I Other policy implications:
I WAP and similar programs can benefit from ex-post analyses

to improve predictive models of home-specific savings

I Role for addressing contractor performance/incentives
(Christensen, Francisco, and Myers, 2020)
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