## The Economics of Electricity Storage

### Natalia Fabra<sup>1</sup>

### <sup>1</sup>Universidad Carlos III de Madrid

February 22, 2023

### The "Duck curve"



(source: http://www.caiso.com/TodaysOutlook/Pages/default.aspx)

### Introduction

- Storage links markets over time
- …just as transportation links markets over space
- Storage smooths price movements by allowing arbitrage over time
  - Predicted demand fluctuations
  - Unpredicted demand fluctuations
  - Temporary production outages
  - Adapting to changes in input or output price changes

## Storing electricity

Two types of storage facilities:

#### Hydro generation and storage

- Conventional hydro (in reservoir)
- Pumped storage (bring water uphill; approx. 50% energy loss)
- Capacity constraints and minimum flows

#### Efficient batteries

## Storing electricity

Two types of storage facilities:

#### Hydro generation and storage

- Conventional hydro (in reservoir)
- Pumped storage (bring water uphill; approx. 50% energy loss)
- Capacity constraints and minimum flows

#### Efficient batteries

Potential positive effects of storage (through *peak-shaving*):

- Storage reduces the need to invest in back-up capacity
  - It increases the value of renewable and conventional capacity

## Storing electricity

Two types of storage facilities:

#### Hydro generation and storage

- Conventional hydro (in reservoir)
- Pumped storage (bring water uphill; approx. 50% energy loss)
- Capacity constraints and minimum flows

#### Efficient batteries

Potential positive effects of storage (through *peak-shaving*):

- Storage reduces the need to invest in back-up capacity
  - It increases the value of renewable and conventional capacity
- Storage reduces costs of producing electricity
  - It increases demand when costs are low and increases supply when costs would otherwise be high

### Relevant questions

- 1. Will investment in storage be socially optimal?
- 2. What are the effects of storage on costs and prices?
- 3. Do storage facilities confer market power?
- 4. Does ownership of storage matter?

### Relevant questions

- 1. Will investment in storage be socially optimal?
- 2. What are the effects of storage on costs and prices?
- 3. Do storage facilities confer market power?
- 4. Does ownership of storage matter?

David Andrés-Cerezo and Natalia Fabra (2023), Storing Power: Market Structure Matters

## Storing technologies and market structure

Different types of storage facilities...







Figure: Pumped hydro

Figure: Grid-scale batteries

Figure: Electric vehicle fleet

## Storing technologies and market structure

Different types of storage facilities...







Figure: Pumped hydro

Figure: Grid-scale batteries

Figure: Electric vehicle fleet

- …that imply different horizontal and vertical market structures:
  - Competitive vs. strategic storage
  - Competitive vs. strategic production
  - ▶ Different **ownership structures** ⇒ stand-alone vs. vertically integrated storage

### Relevant questions

#### 1. Investment in storage capacity .

- Will it be socially optimal?
- Does it depend on market structure?
- 2. Productive efficiency and prices.
  - What are the effects of strategic behavior and the ownership structure?
- 3. Do storage facilities confer **market power**? Do they mitigate market power in generation?

### Modelling set-up

#### Demand

- Price- inelastic demand  $\theta$ ; consumers' valuation v.
- $\theta$  is distributed according to a symmetric  $G(\theta)$  in  $[\underline{\theta}, \overline{\theta}]$ .
  - $\theta$  can be interpreted as demand net of renewables.
  - Known at the production stage  $\rightarrow$  Focus on seasonal variation.

### Modelling set-up

#### Demand

- Price- inelastic demand  $\theta$ ; consumers' valuation v.
- $\theta$  is distributed according to a symmetric  $G(\theta)$  in  $[\underline{\theta}, \overline{\theta}]$ .
  - $\blacktriangleright$   $\theta$  can be interpreted as demand net of renewables.
  - Known at the production stage  $\rightarrow$  Focus on seasonal variation.

#### Generation

Existing assets allow to produce with costs  $\tilde{C}(Q)$  increasing and convex.

### Modelling set-up

#### Demand

- Price- inelastic demand  $\theta$ ; consumers' valuation v.
- $\theta$  is distributed according to a symmetric  $G(\theta)$  in  $[\underline{\theta}, \overline{\theta}]$ .
  - $\theta$  can be interpreted as demand net of renewables.
  - Known at the production stage  $\rightarrow$  Focus on seasonal variation.

#### Generation

Existing assets allow to produce with costs  $\tilde{C}(Q)$  increasing and convex.

#### Storage

- Storage capacity K (in MWh); Investment cost C(K) increasing and convex.
- $q^B(\theta), q^S(\theta)$ : quantities bought (B) and sold (S) by the storage facility.

### Demand process

Cycle.png

### First Best Problem

Welfare is gross consumer surplus minus production and investment costs:

$$\max_{q^{\mathcal{B}}(\theta),q^{\mathcal{S}}(\theta),\mathcal{K}}\mathcal{W} = \int_{\underline{\theta}}^{\overline{\theta}} v\theta dG\left(\theta\right) - \int_{\underline{\theta}}^{\overline{\theta}} \tilde{C}\left(\theta - q^{\mathcal{S}}(\theta) + q^{\mathcal{B}}(\theta)\right) dG\left(\theta\right) - C\left(\mathcal{K}\right)$$

s.t. 
$$(\lambda)$$
 :  $\int_{\underline{\theta}}^{\overline{\theta}} q^{B}(\theta) dG(\theta) \ge \int_{\underline{\theta}}^{\overline{\theta}} q^{S}(\theta) dG(\theta)$   
 $(\mu)$  :  $\int_{\underline{\theta}}^{\overline{\theta}} q^{B}(\theta) dG(\theta) \le K$ 







#### Optimal storage management:

- Store when demand is low and release when demand is high.
- Equalization of marginal costs within storing and releasing regions.
- Minimization of total costs of production.

#### Optimal investment in storage:

- ▶ Marginal benefit ⇒ Marginal cost saving from storing one more unit of output.
- No full marginal cost equalization.



### Horizontal market structure: Production

Existing assets are owned by:

- a dominant firm ( $\alpha$  share), with costs  $\tilde{C}_D(q) = \frac{q^2}{2\alpha}$ .
- ▶ a competitive fringe  $(1 \alpha \text{ share})$  with costs  $\tilde{C}_F(q) = \frac{q^2}{2(1-\alpha)}$ .

### Horizontal market structure: Production

#### Existing assets are owned by:

- ▶ a **dominant firm** ( $\alpha$  share), with costs  $ilde{C}_D(q) = rac{q^2}{2\alpha}$ .
- a competitive fringe (1 − α share) with costs C̃<sub>F</sub>(q) = q<sup>2</sup>/(2(1-α)).
   α ∈ (0, 1)
- Fringe produces  $q_F = (1 \alpha) p(\theta)$ ,
- Dominant firm faces an elastic residual demand  $D(\theta; p(\theta)) = \theta - q_S(\theta) + q_B(\theta) - (1 - \alpha) p(\theta).$

### Independent storage: Dominant firm

Maximize profits over the residual demand:

$$\max_{\boldsymbol{p}(\theta)} \pi_{D} = \boldsymbol{p}(\theta) D(\theta; \boldsymbol{p}(\theta)) - \frac{[D(\theta; \boldsymbol{p}(\theta))]^{2}}{2\alpha}$$

Optimal prices:

$$p( heta) = rac{ heta - q^S( heta) + q^B( heta)}{1 - lpha^2}$$

• Constant mark-up equal to  $\alpha$ .

- Distorted market shares:
  - Dominant produces  $\alpha/(1+\alpha) < \alpha$ .
  - Fringe produces  $1/(1 + \alpha) > 1 \alpha$

Maximize total welfare taking production decisions as given:

$$\max_{q^{B}(\theta),q^{S}(\theta),K}\mathcal{W} = \int_{\underline{\theta}}^{\overline{\theta}} v\theta dG\left(\theta\right) - \int_{\underline{\theta}}^{\overline{\theta}} \left(\frac{q_{D}^{2}}{2\alpha} + \frac{q_{F}^{2}}{2(1-\alpha)}\right) dG\left(\theta\right) - C\left(K\right)$$

subject to the storage constraints and taking as given that:

$$egin{aligned} q_D &= rac{lpha}{1+lpha} ig[ heta - q^{\mathcal{S}}( heta) + q^{\mathcal{B}}( heta) ig] \ q_{\mathcal{F}} &= rac{1}{1+lpha} ig[ heta - q^{\mathcal{S}}( heta) + q^{\mathcal{B}}( heta) ig] \end{aligned}$$







#### Optimal storage management:

- Similar to first best.
- Equalization of *industry* (weighted) marginal costs within storing and releasing regions.
- Weighted marginal cost: sum of the product of each firm's market share and marginal cost.

#### Optimal investment in storage:

- ▶ Marginal benefit ⇒ Marginal cost saving from adding one unit of storage.
- Market power amplifies differences in industry marginal costs.

## Problem of competitive storage firms

#### Perfect competition:

- 1. Large set of small owners (e.g. electric cars).
- 2. Take generation prices as given.
- 3. Free entry in the market  $\Rightarrow$  zero-profit condition.

Storage firms maximize:

$$\max_{q^{S}(\theta),q^{B}(\theta)} \Pi^{S} = \int_{\underline{\theta}}^{\overline{\theta}} p(\theta) \left[ q^{S}(\theta) - q^{B}(\theta) \right] g(\theta) \, d\theta - C(K)$$

subject to the storage constraints and the zero-profit condition.







#### Optimal storage management:

- Storage operators exploit arbitrage opportunities.
- > Prices (not marginal costs) equalized within storage and releasing regions.

#### Equilibrium investment in storage:

- Marginal value of storage capacity equals price differential that an extra unit of capacity allows to arbitrage.
- Market power in the product market amplifies arbitrage profits.



### First Best vs. Second Best vs. Competitive



### First Best vs. Second Best vs. Competitive

- ► Under competitive storage with free-entry in the market, there is over-investment and over-utilization of storage ⇒ K<sup>C</sup> > K<sup>SB</sup> > K<sup>FB</sup>.
  - Price differential higher than marginal cost savings.

$$\underbrace{\frac{\theta_2 - \theta_1}{1 - \alpha^2}}_{\mu^c} > \underbrace{\frac{(\theta_2 - \theta_1)(1 + \alpha - \alpha^2)}{(1 - \alpha^2)(1 + \alpha)}}_{\mu^{SB}} > \underbrace{\frac{\theta_2 - \theta_1}{\mu^{FB}}}_{\mu^{FB}}$$

• Cost convexity  $\rightarrow$  Higher infra-marginal profits  $\rightarrow C(K)/K < C^{'}(K)$ 

### First Best vs. Second Best vs. Competitive

- ► Under competitive storage with free-entry in the market, there is over-investment and over-utilization of storage ⇒ K<sup>C</sup> > K<sup>SB</sup> > K<sup>FB</sup>.
  - Price differential higher than marginal cost savings.

$$\underbrace{\frac{\theta_2 - \theta_1}{1 - \alpha^2}}_{\mu^c} > \underbrace{\frac{(\theta_2 - \theta_1)(1 + \alpha - \alpha^2)}{(1 - \alpha^2)(1 + \alpha)}}_{\mu^{SB}} > \underbrace{\frac{\theta_2 - \theta_1}{\mu^{FB}}}_{\mu^{FB}}$$

• Cost convexity  $\rightarrow$  Higher infra-marginal profits  $\rightarrow C(K)/K < C^{'}(K)$ 

 K<sup>SB</sup> > K<sup>FB</sup> → Storage mitigates market power by reducing residual demand at high demand levels.

Dominant firm vertically integrated with storage monopolist.

$$\max_{p(\theta),q_B(\theta),q_S(\theta)} \pi_S = \int_{\underline{\theta}}^{\overline{\theta}} \left[ p(\theta) D(p;\theta) - \frac{\left[ D(p;\theta) - q_S(\theta) + q_B(\theta) \right]^2}{2\alpha} \right] g(\theta) \, d\theta,$$

subject to the storage constraints.

▶ Higher residual demand (firm controls storage)  $\rightarrow D(p, \theta) = \theta - (1 - \alpha)p(\theta)$ .

Storage facilities  $\Rightarrow$  Help the dominant producer smooth its production over time.









#### Optimal storage management:

- Vertically integrated firm uses storage to smooth own production.
- Under-utilization of given storage capacity with respect to first best.

#### Optimal investment in storage:

- Marginal value of storage capacity equals own marginal cost savings.
- linvestment decreases in  $\alpha$ .

Integrated

### First Best vs. Vertically integrated firm

- In a market with a vertically integrated dominant firm, there is under-investment in storage, K<sup>I</sup> < K<sup>FB</sup> < K<sup>SB</sup>.
- ln contrast to previous cases,  $K^{I}$  is decreasing in  $\alpha$ .
  - Efficiency gains from higher  $\alpha$  dominate larger arbitrage opportunities

### Consumer's surplus

Consumer's surplus only depends on the price profile (i.e. weighted average price)

$$\mathcal{CS} = oldsymbol{v} heta - \int_{ar{ heta}}^{ar{ heta}} oldsymbol{p}( heta) heta oldsymbol{g}( heta) d heta.$$

- Market power in generation increases the price level.
- Market power in storage increases the variance of the market price.

### Consumer's surplus

Consumer's surplus only depends on the price profile (i.e. weighted average price)

$$\mathcal{CS} = oldsymbol{v} heta - \int_{ar{ heta}}^{ar{ heta}} oldsymbol{p}( heta) heta oldsymbol{g}( heta) d heta.$$

- Market power in generation increases the price level.
- Market power in storage increases the variance of the market price.
- > The ranking of consumer surplus across market structures is

$$CS^{FB} > CS^{C} \ge CS^{SB} > CS^{I} > CS^{NS}$$

Price profile: no capacity restrictions



### Total welfare

- ► Total welfare is just a function of the **total costs** of production.
- Market power creates static & dynamic productive inefficiencies:
  - ► Generation (static) ⇒ Distorted market shares.
  - ▶ Storage (dynamic) ⇒ Lower storage usage, production not flatenned.
  - Aggravated with vertical integration  $\Rightarrow$  Fringe absorbs demand variations.

### Total welfare

- Total welfare is just a function of the total costs of production.
- Market power creates static & dynamic productive inefficiencies:
  - ► Generation (static) ⇒ Distorted market shares.
  - Storage (dynamic) ⇒ Lower storage usage, production not flatenned.
  - Aggravated with vertical integration  $\Rightarrow$  Fringe absorbs demand variations.
- The ranking of total welfare across market structures is

$$TW^{FB} > TW^{SB} > TW^{C} > TW^{\prime} > TW^{NS}$$

### Conclusions

- The market does not provide adequate investment incentives in storage capacity.
  - Market power in generation leads to over-investment.
  - Market power in storage to under-investment.
- Vertical integration between storage and generation yields the most inefficient outcome.
  - Texas regulator: utilities are not permitted to use storage.
- Storage reduces the ability to exercise market power in generation, conditional on being independently owned.
- Storage capacity auctions.
  - Solve investment problem, although inefficient storage operation.

# First Best (cont)

#### **Optimal storage management:**

For given K, storage decisions are

$$q_B^{FB}( heta) = \max\left\{ heta_1^{FB} - heta, 0
ight\} ext{ and } q_S^{FB}( heta) = \max\left\{ heta - heta_2^{FB}, 0
ight\}$$

where

$$heta_1^{FB} = E\left[ heta
ight] - rac{\mu}{2} \le heta_2^{FB} = E\left[ heta
ight] + rac{\mu}{2},$$

and  $\mu = \mu^{FB}(K)$  is the unique solution to

$$\int_{\underline{ heta}}^{ heta_{1}^{FB}(\mu)}\left[ heta_{1}^{FB}\left(\mu
ight)- heta
ight]g( heta)d heta=K.$$

Optimal investment in storage:

$$\frac{\partial \mathcal{W}}{\partial \mathcal{K}} = \mathbf{0} \Rightarrow \mu\left(\mathcal{K}^{FB}\right) = \mathcal{C}'\left(\mathcal{K}^{FB}\right) \Rightarrow \theta_2^{FB} - \theta_1^{FB} = \mathcal{C}'\left(\mathcal{K}^{FB}\right)$$



# Second Best (cont)

#### **Optimal storage management:**

For given K, storage decisions are

$$q_B^{SB}( heta) = \max\left\{ heta_1^{SB} - heta, 0
ight\}$$
 and  $q_S^{SB}( heta) = \max\left\{ heta - heta_2^{SB}, 0
ight\}$ 

where

$$\theta_1^{SB} = E\left[\theta\right] - \frac{\mu}{2} \frac{(1-\alpha^2)(1+\alpha)}{1+\alpha-\alpha^2} \le \theta_2^{SB} = E\left[\theta\right] + \frac{\mu}{2} \frac{(1-\alpha^2)(1+\alpha)}{1+\alpha-\alpha^2},$$

and  $\mu = \mu^{FB}(K)$  is the unique solution to

$$\int_{\underline{ heta}}^{ heta_{1}^{SB}(\mu)} \left[ heta_{1}^{SB}\left(\mu
ight) - heta
ight] g( heta) d heta = K.$$

Optimal investment in storage: • Back

$$\frac{\partial \mathcal{W}}{\partial K} = 0 \Rightarrow \mu\left(K^{SB}\right) = C'\left(K^{SB}\right) \Rightarrow \left(\theta_2^{SB} - \theta_1^{SB}\right) \frac{1 + \alpha - \alpha^2}{(1 - \alpha^2)(1 + \alpha)} = C'\left(K^{SB}\right)$$

## Competitive storage (cont)

#### **Optimal storage management:**

For given K, the equilibrium storage decisions are

$$q_B^{\mathcal{C}}( heta) = \max\left\{ heta_1^{\mathcal{C}} - heta, 0
ight\}$$
 and  $q_S^{\mathcal{C}}( heta) = \max\left\{ heta - heta_2^{\mathcal{C}}, 0
ight\}$ 

where

$$\theta_1^{\mathsf{C}} = \mathsf{E}\left[\theta\right] - \frac{\mu\left(1 - \alpha^2\right)}{2} \le \theta_2^{\mathsf{C}} = \mathsf{E}\left[\theta\right] + \frac{\mu\left(1 - \alpha^2\right)}{2},$$

with  $\mu = \mu^{C}(K)$  implicitly defined by:

$$\int_{\underline{ heta}}^{ heta_1^{m{C}}(\mu)} \left[ heta_1^{m{C}}(\mu) - heta
ight] m{g}( heta) d heta = m{K}.$$

Investment in storage:

$$\mu^{\mathsf{C}}(\mathsf{K}) = (\theta_2^{\mathsf{C}} - \theta_1^{\mathsf{C}})/(1 - \alpha^2) = \mathsf{C}(\mathsf{K})/\mathsf{K} < \mathsf{C}'(\mathsf{K}).$$



## Vertically Integrated Firm (cont)

#### **Optimal storage management:**

For given K, the equilibrium storage decisions are

$$q_B'( heta) = \max\left\{ \left( heta_1' - heta 
ight) / 2, 0 
ight\} ext{ and } q_S'( heta) = \max\left\{ \left( heta - heta_2' 
ight) / 2, 0 
ight\},$$

where

$$\theta_1' = E\left[\theta\right] - \mu(1+\alpha)/2 \le \theta_2' = E\left[\theta\right] + \mu(1+\alpha)/2,$$

with  $\mu = \mu'(K)$  is the unique solution to

$$\int_{ heta}^{ heta_1'(\mu)} rac{ heta_1'(\mu)- heta}{2} g( heta) d heta = {\sf K}.$$

**Optimal investment in storage:** 

$$C'(K) = \mu'(K) = (\theta'_2 - \theta'_1)/(1 + \alpha).$$

