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Motivation

The absence of market power, a necessary condition for e¢ ciency
I Firms exercise market power when they withhold capacity or
increase their bids in order to in�uence market prices, and increase
their pro�ts.

I In contrast, �rms behave competitively when they �truthfully�reveal
in their bids their actual willingness to supply output in the market,
e.g. by making available all of their capacity at its avoidable, or
marginal, cost.

I Di¤erent types of market organizations, or �market designs�, give
rise to di¤erent types of strategic opportunities for exercising market
power.

I An understanding of how market power will be exercised in any
particular market requires an understanding of the strategies
available to �rms, and an equilibrium analysis of the market game
being played.
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Outline

1. Supply Function Model

2. Multi-Unit Auction Model
I Symmetric duopoly
I Asymmetric duopoly
I Symmetric Oligopoly



The Supply Function Approach

I Green and Newbery (1992) analyzed competition in the British
electricity market using the �supply function�model of Klemperer
and Meyer (1989).

I K&M argued that under uncertain demand, �rms prefer to set
supply functions, rather than only prices or quantities:

I Each �rm has a set of pro�t maximizing points, one corresponding
to each realization of its residual demand.

I If �rms must decide on their strategies in advance of the realization
of demand, then they are better o¤ specifying an entire supply curve.

I Green and Newbery (1992) observed that demand uncertainty in
K&M is formally identical to demand variation over time when
�rms�bids remain valid for a given period of time.
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Model Description I

I Two symmetric �rms, i = 1, 2.
I Demand D (p, t): known; decreasing and concave in p, varies over t.
I Cost C (q) : non-decreasing and convex, C 0 (p) � 0 and C 00 (p) > 0.

I Supply functions Si (p): continuously di¤erentiable and
non-decreasing.

I The auctioneer determines the lowest price p� such that each �rm
produces over its supply function and the market clears,
S1(p�) + S2(p�) = D(p�, t).

I A Nash equilibrium in supply functions is a supply function pair
fS1 (p) ,S2 (p)g such that Si (p) maximizes i�s expected pro�ts
given Sj (p).

I Market clearing implies �rms produce on their Residual Demand,

qi (t) = Si (p) = D(p, t)� Sj (p).
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Model Description II

I Firm i �s pro�ts are given by

πi (p, t) = p
�
D(p, t)� Sj (p)

�
� Ci

�
D(p, t)� Sj (p)

�
.

I Assuming that i�s set of ex-post pro�t maximizing points can be
described as a supply function which intersects each realisation of i�s
residual demand curve once and only once,

I e.g. RD curves shift in a parallel fashion,

I ...�rm i�s pro�t maximization problem can be expressed as

max
p

πi (p, t) .
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Optimal Supply Function

Source: Frank Wolak



Model Description III

I Di¤erentiating pro�ts w.r.t. p yields the FOC:

dqj
dp

=
qi

p � C 0 (qi )
+Dp

I In the symmetric case,

dq
dp
=

q
p � C 0 (q) +Dp

I Supply functions must be non-decreasing, so that dqdp 2 (0,∞) , or

C 0 (q) < p < C 0 (q)� q
Dp
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Results I
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Results II
I For a given price, there is continuum of possible supply functions
supporting it.

I If demand is certain (i.e., no demand variation), each �rm�s residual
demand is also certain. Thus, there is a single price-quantity pair
that max. its pro�ts.

I Hence, whatever supply function passing through it, is ex-post
optimal as all other points in its supply function will not be reached
in equilibrium.

I If demand can be arbitrarily high with some probability (i.e. if the
support of the random variable is unbounded), there is a unique
equilibrium.

I As the FOC has to be satis�ed at in�nitely many points, there is only
one such supply function passing through them all.

I In all intermediate case, there is a connected set of equilibria lying
between the perfectly competitive and the Cournot solutions.

I Some authors restrict attention to linear supply functions,
S (p) = A� bp, as there is a unique equilibrium in linear functions-
intuition: there is unique line connecting (at least) two ex-post
price-quantity pairs.
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Feasible Supply Function Equilibria

Source: Green and Newbery (JPE, 1992)



Discussion

I If the range of variation in demand is �nite then the model appears
to have little predictive value:

I Almost anything between the Cournot and Bertrand solutions can be
an equilibrium in supply functions.

I If the (short-run) elasticity of demand for electricity is zero then
the model has no solution in the sense that the Cournot solution is
unde�ned.

I The assumption that generators submit continuously di¤erentiable
supply functions is contrary to reality:

I Original market design in England and Wales: generators were
allowed to submit up to three incremental prices per unit

I Spain: �rms are allowed to submit up to 25 price-quantity pairs per
unit.

I Further, this assumption yields equilibria which do not exist in
models in which generating units are discrete...
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Model Description I

Duopoly

I two symmetric suppliers (extension to N � 2 asymmetric �rms)
I (�xed) capacity constraints k (extension to endogenous capacities)
I constant unit costs c (extension to step cost functions)

Exogenous demand

I �xed demand θ (extension to variable demand)
I price inelastic (extension to downward sloping demand)

Bids

I each supplier makes one bid (b1, b2) (extension to multi-units)
I constrained by �market reserve price�P
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Model Description II

Price formation

I ranking of bids in increasing order
I lowest-ranking bidder supplies up to capacity (if needed)
I highest-ranking bidder supplies residual demand (if positive)

qi (θ;b) =

8>>>><>>>>:
min fθ, kg if bi < bj

1
2 min fθ, kg+ 1

2 max f0, θ � kg if bi = bj

max f0, θ � kg if bi > bj

I both �rms are paid at the highest accepted bid (�System Marginal
Price�)

p� =
�
bj if bi � bj and θ > ki
bi otherwise
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Figure 1: Low demand θ < k Figure 2: High demand θ > k



Equilibrium prices and pro�ts

Proposition

(i) (Low demand) if θ � k, in the unique pure-strategy equilibrium the
highest accepted price o¤er equals c and suppliers make no pro�ts.

(ii) (High demand) if θ > k, in any pure-strategy equilibrium one �rm
bids at P whereas the rival submits bids no greater than
c + [P � c ] [θ � k ] /θ. The high-bidding supplier makes pro�ts
[P � c ] [θ � k ] whereas the low-bidding supplier makes pro�ts [P � c ] k.



Equilibrium prices

Figure 3: Equilibrium prices as a function of demand



Mixed Strategy Equilibrium (symmetric)

I Let Fi (b) = Pr fbi � bg be �rms�equilibrium mixed-strategy

I When bidding b, �rm i�s pro�ts are:

πi (b) = Fj (b) (b� c) [θ � k ] + k
Z P
b
(υ� c) dFj (υ)

I On (b,P), the net gain from raising the bid must be zero:

F (b) [θ � k ]� f (b) (b� c) [2k � θ] = 0

I Price e¤ect: increasing the bid increases pro�ts if the rival bids
below, F (b) [θ � k ] , but

I Quantity e¤ect: reduces the prob. of selling at capacity instead of
residual demand, �f (b) (b� c) [k � (θ � k)] .
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Mixed Strategy Equilibrium
I We need to solve a di¤erential equation:

F (b) [θ � k ]� f (b) (b� c) [k � (θ � k)] = 0

I The above expression may alternatively be written:

f (b)� 1
b� c

θ � k
2k � θ

F (b) = 0

I which has have solutions

F (b) = bA (b� c) θ�k
2k�θ

I Since at a symmetric equilibrium there is no mass point at P,

F (P) = bA (b� c) θ�k
2k�θ = 1) bA = � 1

P � c

� θ�k
2k�θ

) F (b) =
�
b� c
P � c

� θ�k
2k�θ

I Equilibrium pro�ts become: π = (P � c) [θ � k ]
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Empirical Evidence: UK Pool

Figure 4: Low demand Figure 5: High demand

Source: von der Fehr and Harbord (EJ, 1993)



Asymmetric Capacities and Symmetric Costs

I Assume (possibly) asymmetric capacities k1 � k2 [�rm 1 large]

Proposition

(i) (Low demand) if θ � k2, in the unique pure-strategy equilibrium the
highest accepted price o¤er equals c and suppliers make no pro�ts.

(ii) (High demand)

Region I: if k2 < θ � k1, �rm 1 bids at P whereas �rm 2 submits bids no
greater than P [θ � k2 ] /θ.

Region II: if θ > k1, in any pure-strategy equilibrium �rm i = 1, 2 bids at
P whereas �rm j submits bids no greater than P

�
θ � kj

�
/θ.



Comparative Statics: E¤ects on Revenues
Symmetric costs and uniformly distributed demand

I Increasing capacity asymmetry

k1 .5 .6 .7 .8 .9 1
k2 .5 .4 .3 .2 .1 0

E [R ] .375 .420 .455 .480 .495 .5

I Increasing aggregate capacity (symmetric capacities)

K 1 1.2 1.4 1.6 1.8 2
E [R ] .375 .320 .255 .180 .095 0

I Reducing the price-cap P

P 1 .9 0.75 .5 .25 0
E [R ] .375 .334 .281 .188 .094 0
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Symmetric Oligopoly

I Increasing the number of (symmetric) �rms has a
pro-competitive e¤ect: the residual demand faced by any
individual �rm is smaller and hence the boundary between low and
high demand realisations increases [bθ = [N � 1]K/N].

I With multi-unit generators, prices will tend to be higher than in
the model in which these same units act independently.

I Raising the bid of one unit has an external e¤ect on other units since
it increases the SMP.

I A generator which controls many units will internalize part of this
externality and will thus have an greater incentive to increase its
prices the more owner controls.

I The SMP will be a decreasing function of the number of owners, i.e.
the industry concentration ratio.
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The Number of (symmetric) Firms

Figure 6: Equilibrium prices: two symmetric �rms versus four symmetric �rms



A Tale of Two States

Low demand (all but one supplier can cover demand)

I price at (constrained by) (marginal) cost
I (productive e¢ ciency)

High demand (all suppliers needed to cover demand)

I price above (marginal) cost
I price constrained by reserve price only
I (potential productive ine¢ ciency)

Relative incidence of low-demand states:

I aggregate capacity (for given relative capacities across �rms)
I number of �rms
I symmetry in capacities (if symmetric costs)
I asymmetry in costs (if symmetric capacities)
I the price-cap P
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