ENERGYECOLAB

The Implicit Cost of Carbon Abatement During the COVID-19 Pandemic

EEA 2021. August 26th, 2021.

Natalia Fabra,* Aitor Lacuesta,[‡] and Mateus Souza*

* Universidad Carlos III de Madrid, EnergyEcoLab
 ‡ Bank of Spain

Motivation

Forbes

Apr 22, 2020, 0t:00pm EDT

Silver Lining Of Pandemic Shows It's Possible To Solve Climate Change

SAP BRANDVOICE | Paid Program

f By Victoria Rochard, Thought Leadership, SAP

Scrolling through Facebook recently, there was one

Impact of the pandemic on carbon emissions:

Is there a silver lining? If so, how thick is it?

EU Green Deal:

- By 2050, reach net zero CO2 emissions by 2050
- By 2030, reduce emissions by at least 55% vs 1990 levels

Debate on how to achieve those goals:

- Is it possible without sacrificing economic growth?
- Or can we decouple growth from emissions?
- What are the implicit costs of different strategies?

We focus on the case of Spain and its power sector.

What are the implicit costs of carbon abatement according to alternative strategies?

What are the implicit costs of carbon abatement according to alternative strategies?

1 Slowing down economic activity:

- Pandemic as a natural experiment
- Caveat: Pandemic was a shock, not planned "degrowth"
- Pandemic is proxy of slow down, holding economic structure fixed

What are the implicit costs of carbon abatement according to alternative strategies?

1 Slowing down economic activity:

- Pandemic as a natural experiment
- Caveat: Pandemic was a shock, not planned "degrowth"
- Pandemic is proxy of slow down, holding economic structure fixed

2 Investing in renewables:

- How much investment in renewables would we need to achieve the same carbon abatement as that observed during the pandemic?
- Can be considered as part of a decoupling strategy

Steps of the analysis

• We measure the effects of the pandemic on **emissions** reductions.

- Counterfactual predictions in the power sector.
- Emissions from other sectors (from external references).
- 2 We measure the pandemic effects on the Spanish economy.
 - Counterfactual forecasts of **GDP**.

 \longrightarrow After steps 1 and 2, calculate $\mbox{implicit cost of carbon}$ from slowing down economic activity

- Simulate **investments** in renewables necessary to achieve CO2 reductions similar to those observed in the power sector during the pandemic.
- Compare the implicit cost of carbon abatement from the pandemic versus from investing in renewables.

Predicting Counterfactual Electricity Consumption

Objective:

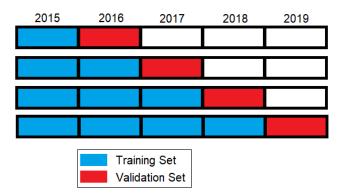
- Predict counterfactual electricity consumption in absence of the pandemic
 - Obtain precise hourly predictions, which will be used later in electricity market simulations
 - Use only covariates that are not affected by the pandemic

Data:

- Hourly consumption in Spain from 2015-2020
- Weather variables: temperature, precipitation, wind speed, and wind direction
- Holidays
- Date/time fixed effects (seasonality)
- Time trends

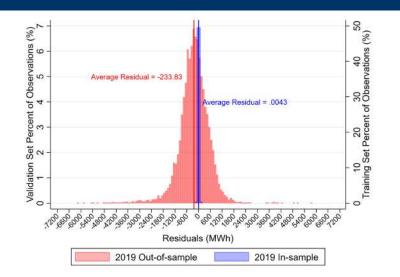
Predicting Counterfactual Electricity Consumption

Predictive machine learning model of consumption:

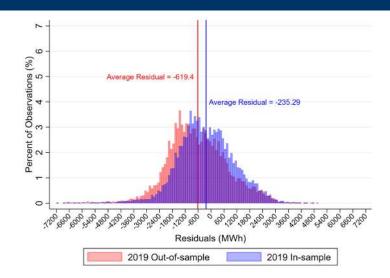

$$Y_t(0) = g(\mathbf{X}_t) + \varepsilon_t$$

- Covariates **X**_t: weather and date/time fixed effects
- Model trained and cross-validated with past data (2015-2019)
 - Model selected based on out-of-sample performance
 - Using forward chaining cross-validation (Hyndman and Athanasopoulos, 2018):
- g(): Gradient Boosted Trees (GBT; Chen and Guestrin, 2016)
- Impact of the pandemic on electricity demand:

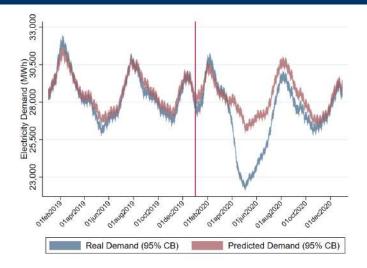
$$\hat{b}_t = Y_t(1) - \hat{Y}_t(0) = Y_t(1) - \hat{g}(\mathbf{X}_t)$$


Main assumption: relationship g() between energy consumption and covariates would not have changed from 2019-2020.

Forward Chaining Cross-Validation


- Choose model based on prediction errors (RMSE) in 2019
- GBT results in RMSE of 809 MWh; compared to avg. hourly consumption in 2019 = 28,528 MWh; or std. dev. = 4,525.

Cross-Validation Results – ML


Average out-of-sample residual is less than 1% of average hourly consumption

Cross-Validation Results - fixed effects model

Day of year FE; hour of day interacted with weather; lagged (up to 3) weather

Counterfactual Consumption in the Power Sector

Notes: Based on 30-day moving averages.

Counterfactual Emissions in the Power Sector

- Use the hourly consumption estimates to simulate the hourly electricity market outcomes with and w/o the pandemic
- Simulations based on De Frutos and Fabra (2012)
- \blacksquare Identify which plants would have been dispatched \longrightarrow obtain carbon intensity of the market

Counterfactual Emissions in the Power Sector

- Use the hourly consumption estimates to simulate the hourly electricity market outcomes with and w/o the pandemic
- Simulations based on De Frutos and Fabra (2012)
- \blacksquare Identify which plants would have been dispatched \longrightarrow obtain carbon intensity of the market
- We take all else as given:
 - Hourly availability of renewables
 - Monthly hydro availability
 - Existing capacity of gas/coal/nuclear plants
 - Daily prices of gas/coal/CO2
 - Caveats: nuclear availability and gas/coal/CO2 prices may have changed

Simulated Change in Emissions from Power Sector

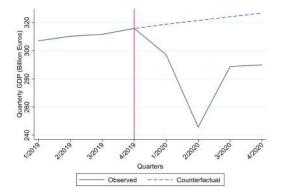
Spanish power sector carbon emissions, measured in MtCO2

	Simulations With	Simulations With	
	Counterfactual Demand	Realized Demand	Difference
Coal	3.23	3.08	0.15
Gas	21.69	18.00	3.69
Cogen + Others	11.16	10.87	0.29
Total	36.07	31.94	4.13

Notes: Assuming competitive market structure. Results from strategic equilibrium presented in the paper.

Almost 90% of abatement due to reduced gas usage.

CO2 Emissions for Other Sectorsin Spain


	MtCC	02 Emis	sions	
	2019	2020	Diff.	Pct. Diff.
Domestic Aviation	5.64	3.00	2.63	46.68
Ground Transport	84.83	75.40	9.43	11.12
Industry	62.25	55.63	6.62	10.64
Residential	36.70	36.14	0.56	1.53

Source: (Carbon Monitor; Liu et al., 2020)

Total abatement in Spain during 2020 = 23.14 MtCO2

Counterfactual Economic Activity

Counterfactual GDP based on forecasts from Bank of Spain
 Forecasts made at the end of 2019 (no info. about pandemic)

Total GDP loss in 2020: 169.37 Billion Euros
 Implicit cost of carbon = 7,319 €/Ton CO2

Investing in Renewables

- Power market simulations (De Frutos and Fabra, 2012)
- Vary types of investments: increase solar or wind capacity
- Keep simulations that yield the same emissions reductions in the power sector as the pandemic

		Investme	ent Costs (M EUR)	
	Emission Reductions (M Tons)	Total	Annualized Investment+O&M	Implicit Cost of Carbon (EUR/Ton)
Pandemic	4.13	-	-	-
Solar Investments	4.53	6,890.11	275.60	60.80
Wind Investments	4.06	6,122.97	244.92	60.34

Notes: Assuming competitive market structure. Results from strategic equilibrium presented in the paper. Costs from IRENA (2020).

Investing in Renewables

- Power market simulations (De Frutos and Fabra, 2012)
- Vary types of investments: increase solar or wind capacity
- Keep simulations that yield the same emissions reductions in the power sector as the pandemic

		Investme	ent Costs (M EUR)	
	Emission Reductions (M Tons)	Total	Annualized Investment+O&M	Implicit Cost of Carbon (EUR/Ton)
Pandemic	4.13	-	-	-
Solar Investments	4.53	6,890.11	275.60	60.80
Wind Investments	4.06	6,122.97	244.92	60.34

Notes: Assuming competitive market structure. Results from strategic equilibrium presented in the paper. Costs from IRENA (2020).

The implicit cost of carbon under each strategy is:

- I Slowing down economic activity: 7,319 €/Ton CO2
- 2 Renewables: 60 €/Ton CO2

Conclusions

Carbon abatement may be obtained by slowing down economic activity and/or investing in renewables

- **1** Results suggest that simply halting growth is too costly
 - The magnitude of the losses versus the relatively small abatement make that clear
 - Carbon abatement was short-lived, while economic losses are expected to be long-lasting
- 2 Investments in renewables can achieve abatement at much lower cost
 - Renewables could even provide more benefits in terms of economic stimulus
- Of course, these strategies should be complemented with:
 Improving energy efficiency, revolutionizing transport and mobility, etc.

Comments? Feedback? Questions? mateus.nogueira@uc3m.es http://energyecolab.uc3m.es/

This Project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 772331).

References

- Chen, Tianqi and Carlos Guestrin (2016). "XGBoost: A Scalable Tree Boosting System". *arXiv:1603.02754*.
- De Frutos, María-Ángeles and Natalia Fabra (2012). "How to allocate forward contracts: The case of electricity markets". *European Economic Review* 56(3), pp. 451–469.
- Hyndman, Rob J and George Athanasopoulos (2018). *Forecasting: principles and practice*. OTexts. Chap. 5.10 - Time series cross-validation.
- IRENA (2020). Renewable Power Generation Costs in 2019. Tech. rep. International Renewable Energy Agency, Abu Dhabi.
- Liu, Zhu, Philippe Ciais, Zhu Deng, Steven J Davis, Bo Zheng, Yilong Wang, Duo Cui, Biqing Zhu, Xinyu Dou, Piyu Ke, et al. (2020). "Carbon Monitor, a near-real-time daily dataset of global CO 2 emission from fossil fuel and cement production". *Scientific data* 7(1), pp. 1–12.

Appendix: Why Machine Learning?

- ML flexibly accounts for nonlienarities and high-order interactions
- Agnostic about which variables are most important
- Agnostic about functional forms
- Best out-of-sample performance
 Will compare to fixed effects models

Using RMSE as accuracy metric. Values are in MWh.

-				-			
F	Panel A: Validation Year RMSE						
Model ID	2016	2017	2018	2019			
ML 1	1155.88	934.42	856.18	809.13			
ML 2	1160.67	984.78	871.45	815.45			
ML 3	1517.53	1219.22	1165.42	1063.05			
ML 4	1532.10	1266.84	1152.23	1083.03			
FE 1	1786.17	1837.05	1878.91	1998.73			
FE 2	1856.67	1836.63	1890.78	2019.15			
FE 3	2931.66	1814.91	1899.57	2009.61			
FE 4	1936.32	1227.76	1361.87	1550.50			

Compared to avg. hourly consumption in 2019 = 28,528 MWh; or std. dev. = 4,525.

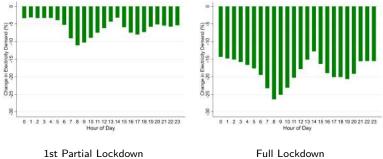
Using RMSE as accuracy metric. Values are in MWh.

F	Panel B: Details on Model Specifications						
Model ID		ML Hyperparameters					
	ntrees	max_depth	shrinkage	minobspernode			
ML 1	2000	10	0.05	20			
ML 2	2000	30	0.05	20			
ML 3	2000	10	0.5	20			
ML 4	2000	30	0.5	20			
Model ID		Fixed Effects Included					
FE 1	Month	Month of year					
FE 2	Week c	Week of year					
FE 3	Day of	Day of year					
FE 4	Day of	Day of year; hour of day interacted with weather					

Appendix: Inference With Machine Learning

Let b_t be the effect of the pandemic. $Y_t(1)$ is realized demand, and $Y_t(0)$ is counterfactual demand

$$\begin{split} \hat{b}_t &= Y_t(1) - \hat{Y}_t(0) \\ \hat{b}_t &= Y_t(0) + b_t - \hat{Y}_t(0) \\ \longrightarrow b_t &= \hat{b}_t + \hat{Y}_t(0) - Y_t(0) \\ \longrightarrow b_t &= \hat{b}_t - \hat{r}_t \end{split}$$

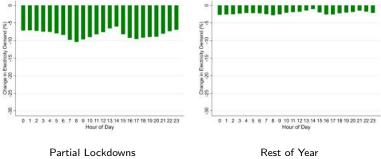

Where \hat{r}_t are residuals from the prediction of $Y_t(0)$ Then we also have (assuming \hat{b}_t and \hat{r}_t independent):

$$Var(b_t) = Var(\hat{b}_t) + Var(\hat{r}_t)$$

Note that \hat{r}_t cannot be observed, so we proxy it with the variance of the (out-of-sample) residuals from 2019

Effect of the Pandemic on Electricity Consumption

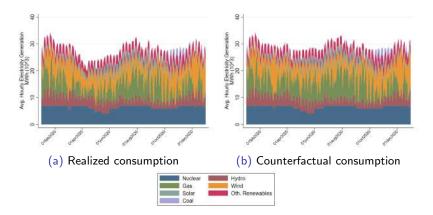
Reduced electricity consumption by hour of the day



(March 11 - March 28)

Full Lockdown (March 29 - April 10)

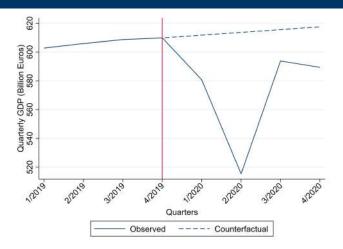
Effect of the Pandemic on Electricity Consumption


Reduced electricity consumption by hour of the day

(April 11 - August 14)

Rest of Year (August 15 - December 31)

Generation Mix in the Power Sector

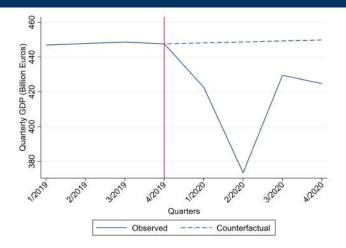

Notes: Using data up to September 2020. Assuming competitive market structure. Results from strategic equilibrium presented in the paper.

External Validity: France - Emissions

Sector	MtCO2	MtCO2 Emissions				
	2019	2020	Diff.	Pct. Diff.		
Domestic Aviation	2.33	1.29	1.04	44.53		
Ground Transport	116.62	104.80	11.82	10.14		
Industry	61.67	54.47	7.20	11.67		
Residential	79.87	75.75	4.12	5.16		
	Counterfactual	Realized	Diff.	Pct. Diff.		
Power (lower bound)	22.68	21.79	0.90	3.95		
Power (upper bound)	171.28	164.50	6.77	3.95		
Total (lower bound)	283.17	258.10	25.07	8.85		
Total (upper bound)	431.77	400.81	30.96	7.17		

Lower bound assumes carbon intensity of 49 gCO2/kWh (avg. of sector) Upper bound assumes carbon intensity of 370 gCO2/kWh (CCGTs)

External Validity: France - GDP


Short-term GDP loss = 179.11 Billion Euros Implicit cost of carbon = 5,785 Euro/Ton for France.

External Validity: Italy - Emissions

Sector	MtCO2	MtCO2 Emissions					
00000							
	2019	2020	Diff.	Pct. Diff.			
Domestic Aviation	1.89	1.00	0.89	47.02			
Ground Transport	91.13	81.63	9.50	10.42			
Industry	54.39	47.75	6.64	12.21			
Residential	74.95	73.92	1.04	1.38			
	Counterfactual	Realized	Diff.	Pct. Diff.			
Power (lower bound)	76.18	74.31	1.87	2.45			
Power (upper bound)	103.62	101.08	2.54	2.45			
Total (lower bound)	298.54	278.61	19.93	6.68			
Total (upper bound)	325.98	305.38	20.60	6.32			

Lower bound assumes carbon intensity of 272 gCO2/kWh (avg. of sector) Upper bound assumes carbon intensity of 370 gCO2/kWh (CCGTs)

External Validity: Italy – GDP

Short-term GDP loss = 145.48 Billion Euros Implicit cost of carbon = 7,062 Euro/Ton for Italy.

Simulations Using Predictions from FE

	Counterfactual Demand (FE Model)		Realized Demand		Difference	
CO2 (M Ton)	Competitive	Strategic	Competitive	Strategic	Competitive	Strategic
Coal	3.36	3.87	3.08	3.52	0.28	0.35
Gas	23.55	23.36	18.00	17.85	5.55	5.51
Cogen + Others	11.21	11.56	10.87	11.49	0.34	0.07
Total	38.11	38.79	31.94	32.86	6.16	5.93

Abatement estimates are substantially higher with these simulations: assuming competitive behavior, abatement was 6.16 Million Tons (almost 50% higher than those from ML).