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Abstract

Given the increasing weight of renewable energies in the power sector, it is im-

portant to understand how they affect market performance. In this paper we study

whether the degree of market power in wholesale electricity markets depends on the

degree of price exposure faced by renewables. Our theoretical analysis shows that

paying renewables at fixed prices, rather than at market-based prices, is relatively

more effective at curbing market power if the dominant players own significant

shares of the renewable capacity. To test this prediction, our empirical analysis

leverages several short-lived changes to renewable energy pricing mechanisms in

the Spanish electricity market. We find that the switch from full price exposure to

fixed prices caused a 2-4% reduction in the average price-cost markup.

Keywords: market power, forward contracts, arbitrage, price discrimination,

renewables.

∗Emails: natalia.fabra@uc3m.es and imelda@graduateinstitute.ch. Suggestions by the editor, Lucas

Davis, and two anonymous referees have helped us improve the paper. We also thank comments by

David Benatia, James Bushnell, Estelle Cantillon, Peter Cramton, Richard Green, Stefan Lamp, Gerard

Llobet, Nils May, Juan Pablo Montero, Mateus Souza, Mar Reguant, Stanley Reynolds, Robert Ritz,

Jan Stuhler, Erich Muehlegger, and Andre Veiga as well as seminar participants at PUC (Santiago de

Chile), CREST (Paris), Dauphine (Paris), Sciences Po (Paris), Imperial College (London), UC Davis

(California), CEPR VIOS Seminar, University of Cambridge, Carlos III (Madrid), Wharton School

(University of Pennsylvania), and NYU are gratefully acknowledged. This Project has received funding

from the European Research Council (ERC) under the European Union Horizon 2020 Research and

Innovation Program (Grant Agreement No 772331 ELECTRIC CHALLENGES).



1 Introduction

At the global level, the need to reduce carbon emissions has led to a rapid increase in

renewable capacity in the power sector.1 Investments involve large capital upfront costs,

but once in place, renewable energies allow electricity to be produced at almost zero

marginal costs. Hence, in competitive markets, renewable energies push the supply cost

curve to the right, leading to lower electricity prices. Yet, market power can offset this

result as firms may behave strategically to mitigate the price reduction. It is therefore

important to understand how the increasing weight of renewables affects firms’ ability

and incentives to exercise market power in electricity markets. This issue is critical for

the success of the energy transition, as if electricity prices do not go down relative to the

price of fossil fuels, other sectors will lack the incentives to rely on electrification as a

way to reduce their own emissions.

In this paper, we study how the pricing regime for renewables impacts the overall

degree of competition in wholesale electricity markets. In particular, we focus on the

market power effects of exposing renewables to the fluctuations in wholesale prices relative

to paying them at fixed prices. Regulators are still debating the best pricing scheme for

renewables (CEER, 2021),2 but their focus is typically on the impact of these pricing

schemes on investment incentives.3 However, as we show in this paper, pricing schemes

also affect firms’ bidding behavior even when taking their capacity investments as given.

To estimate the casual effect of these pricing schemes on firms’ bidding behavior, we

leverage a quasi-experiment that took place in the Spanish electricity market, where the

regulator first decided to expose existing wind producers to wholesale market prices, then

moved them to fixed prices, and ultimately switched them back to market-based prices.

When these regulatory changes were made, wind already represented an important share

of total output. Hence, these changes provide a unique opportunity to identify the causal

effect of renewable energy price exposure on market power in electricity markets.

1The International Renewable Energy Agency (IRENA) estimates that compliance with the 2017

Paris Climate Agreement will require overall investments in renewables to increase by 76% in 2030,

relative to 2014 levels. Europe expects that over two-thirds of its electricity generation will come from

renewable resources by 2030, to achieve a carbon-free power sector before 2050 (European Commission,

2019). Likewise, the US plans to achieve carbon neutrality by 2050, with a 90% carbon-free electricity

sector by 2035.
2In the industry jargon, these two schemes are commonly referred to as Feed-in-Tariffs (FiT) and

Feed-in-Premia (FiP).
3See Fabra (2021) for discussion of the impact on renewables pricing schemes on investment incentives.
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Theoretical approach and findings. Electricity markets are typically organized as

a sequence of markets, with a large market that operates one day ahead of the actual

delivery, and several smaller sequential markets that operate closer to real-time. In

the day-ahead market, generators submit bids indicating how much they are willing to

produce at each price, and then have the possibility to fine-tune their day-ahead commit-

ments in the subsequent markets. It is commonly understood that generators exercise

market power by withholding output from the day-ahead market (or equivalently, by

raising their bids above marginal costs).4 However, as shown by Ito and Reguant (2016),

they can exercise further market power by exploiting the sequence of markets. More

specifically, the existence of real-time (or spot) markets allows firms to sell the quantities

that were initially withheld from the day-ahead market. Doing so is profitable as it leads

to larger price increases in the big market (the day-ahead market) while the resulting

price reductions affect the smaller markets (the spot markets). As a consequence, market

power creates a positive wedge between day-ahead and spot prices.

In this paper, we develop a simple two-stage game (which mimics the sequence of

day-ahead and spot markets) between a dominant firm and a set of fringe firms. The

former has a diversified portfolio, i.e., it owns both conventional (thermal) and renewable

generation technologies, while the latter are single-technology firms. The fringe firms are

price-takers, while the dominant firm sets prices in the two markets, taking as given the

fringe firms’ output decisions.5 We show that equilibrium market outcomes depend on

whether renewables are paid with fixed prices or with market prices.

Specifically, the effects of pricing schemes on competition are channeled through two

types of effects. Under the market prices regime, there is an ‘arbitrage effect’. Given the

positive wedge between day-ahead and spot prices, fringe players have an incentive to

oversell in the day-ahead market at high prices and buy back their excess commitment in

the spot market at lower prices. This behavior mitigates market power as any attempt

by the dominant firm to push day-ahead prices up is met by an increase in the fringe’s

production. However, regulation imposes limits on arbitrage, as electricity firms are only

allowed to offer to produce up to their nameplate capacities. For this reason, compared to

other technologies, renewable energies are particularly well suited to engage in arbitrage:6

4See for instance, Borenstein (2000) and Fabra, Fehr and Harbord (2006), among others.
5This simple dominant-fringe firm model gives rise to similar results as the Cournot model, which we

develop in the Appendix. The reason is that the dominant firm best replies to the production decisions

of its rivals. Taking these as given, or endogenizing them in equilibrium, does not change the essence of

the results.
6This arbitrage is purely financial: they oversell in the day-ahead market at a high price and buy

their excess commitment in the spot market at a lower price.
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they can rarely produce at full capacity due to lack of wind or sun, so they can use their

idle capacities for arbitrage purposes.7 Hence, for the ‘arbitrage effect’ to be strong

enough, there must be a sufficiently large amount of renewables in the hands of the

fringe players.

Under the fixed prices regime, there is a ‘forward contract effect’. We use this term

because fixed prices act as a forward contract over the firm’s renewable sales (Allaz and

Vila, 1993). This means that fixed prices reduce the dominant producer’s incentives to

withhold output in the day-ahead market, as its renewable output would not benefit from

the resulting price increase. For the ‘forward contract effect’ to be strong enough, there

must be a sufficiently large amount of renewables in the hands of the dominant firm.

We show that the relative strengths of the ‘arbitrage’ and the ‘forward contract’

effects depend on the extent to which the dominant firm with conventional production

also owns renewable generation (‘degree of diversification’). In particular, the lower the

degree of diversification, the stronger the ‘arbitrage effect’ under market prices and the

weaker the ‘forward contract effect’ under fixed prices. In the extreme case in which the

dominant firm does not own any renewables (no diversification), full price exposure is

most effective at mitigating market power through arbitrage. On the contrary, if the

dominant firm owns all renewables (full diversification), shielding renewable generation

from price fluctuations is more effective as it weakens the dominant firm’s incentives to

raise day-ahead market prices in the first place.

Under both pricing schemes, an increase in renewable energy (weakly) depresses day-

ahead market prices, but the effect is stronger when shielded from wholesale market

price fluctuations. Acemoglu, Kakhbod and Ozdaglar (2017) find that the price impact

of renewables in the day-ahead market is fully neutralized when the dominant firm owns

all the renewable energies and these are exposed to market price fluctuations. In contrast,

we show that under fixed prices the price effect is never neutralized and it is independent

of the degree of diversification.

These differential effects of renewables under the two pricing schemes have welfare

and distributional implications. An increase in renewable output reduces the deadweight

loss under both pricing schemes, but efficiency is always greater under fixed prices. The

reason is that under fixed prices renewables push spot prices closer to marginal costs,

while they increase spot prices when paid at market prices. However, the distributional

implications – which depend on the day-ahead prices – can go either way depending on

the degree of diversification. One of the main results of the paper is that, in markets

7Note that the dominant firm does not have incentives to arbitrage with its own renewables as that

would curb its market power.
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with high (low) degree of diversification, consumers are relatively better-off (worse-off)

when renewables are shielded from wholesale market prices.8

Empirical approach and findings. We test the key predictions of the model using

data from the Spanish electricity market from February 2012 to January 2015, which

spans three different pricing regimes for renewable energies – market-based pricing, then

fixed pricing, and then market-based pricing again. Our empirical approach consists of

a structural analysis of bidding incentives and a quasi-experimental analysis of how ar-

bitrage behavior responds to different pricing regimes. Using results from the structural

model, we calculate the price-cost markups in the day-ahead market to assess how the

renewable pricing policies affected the degree of market power in the Spanish day-ahead

electricity market. Importantly, this market is characterized by a high degree of concen-

tration and diversification, with the three largest firms owning 60% of the wind capacity,

and 80% of the non-wind capacity.9

Firstly, our structural analysis of price-setting incentives in the day-ahead market

validates the ‘forward contract effect’. Namely, taking the slopes of the realized residual

demands as given, we show that firms’ wind output did not increase their markups under

fixed prices, in contrast to when their wind output was exposed to market prices. This

suggests that, all else being equal, the ‘forward contract effect’ reduced firms’ market

power under fixed prices.

Secondly, we rely on a differences-in-differences (DiD) approach to assess how changes

in price exposure affected the fringe firms’ incentives to arbitrage. Our analysis has two

appealing features: (i) we exploit the two regulatory changes, from market prices to fixed

prices and then back to market prices, and (ii) we use two plausible control groups, either

independent suppliers or renewables other than wind. Our DiD analysis shows that wind

producers stopped arbitraging price differences after the switch from market prices to

fixed prices. However, they resumed arbitrage once they were exposed to market prices

again. These results validate the empirical relevance and robustness of the ‘arbitrage

8It is important to note that this analysis focuses on the market power impacts of renewable pricing

schemes for given capacities, and therefore leaves out some other factors that could also have welfare

implications, such as entry and investment incentives, learning externalities and other spillover effects,

or the fiscal impacts of the various pricing mechanisms, among others. For instance, Newbery et al.

(2018) and May and Neuhoff (2017) favor the use of pricing schemes with limited price exposure as a

way to de-risk the investments, ultimately bringing down the costs of capital and facilitating the entry

of more diverse players.
9These properties are shared with other markets. For instance, the dominant producer in the French

market (EDF) has a portfolio with 75% of thermal plants and 25% of renewable plants (2020 data).

Similar results apply to most markets in Europe, including Italy or the UK.
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effect’.

Thirdly, the interplay between the ‘forward contract’ and the ‘arbitrage’ effects is also

confirmed by the empirical analysis of the price differences across markets. We show that,

under fixed prices, an increase in the dominant firm’s share of wind output reduced price

differences across markets, as expected from the strengthening of the ‘forward contract

effect’. In contrast, under market prices, an increase in the fringe firms’ wind share

enlarged price differences across markets, as expected from the weakening of the ‘arbitrage

effect’.

Lastly, to understand which of these two effects dominated in shaping market power,

we leverage our structural estimates to compute price-cost markups in the day-ahead

market. We find that markups were significantly lower while firms were subject to fixed

prices as compared to market prices. The average markup during the fixed price regime

was 6.3%, while it was 8.3% and 10.7% under the market-based price regimes. These

results are robust to alternative ways of comparing the markups (i.e., by firms, by windy-

vs.-less-windy hours, by peak-vs.-off-peak hours). Based on these findings, we conclude

that, given the degree of diversification in the Spanish electricity market, the ‘forward

contract effect’ dominated the ‘arbitrage effect’, which led to weaker market power when

renewables were paid at fixed prices, as opposed to when they were exposed to wholesale

market price volatility.

Related Literature. Our paper brings together results from the literature on com-

petition in sequential markets (Ito and Reguant, 2016), the price depressing effect of

renewables (Acemoglu, Kakhbod and Ozdaglar, 2017), and forward contracting (Allaz

and Vila, 1993).

First, from a theoretical point of view, we extend Ito and Reguant (2016)’s analysis

by characterizing and comparing equilibria across sequential markets when renewable

energies are paid with fixed prices or with market prices. Moreover, we shed light on how

the pricing schemes for renewables affect their price depressing effects in the presence of

market power and under different degrees of diversification. In this sense, our work can

also be viewed as extending Acemoglu, Kakhbod and Ozdaglar (2017)’s analysis. Our

empirical results provide support for their theoretical findings.

Second, we also complement the existing evidence on the market power impacts of for-

ward contracts in electricity markets (Wolak, 2000; Bushnell, Mansur and Saravia, 2008;

Hortaçsu and Puller, 2008; Fabra and Toro, 2005). We contribute to this literature by

providing new evidence on the impact of firms’ price exposure on market power through

structural estimates. Our results regarding the existence of market power in the Spanish
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electricity market are also in line with those of previous studies, despite differences in the

focus and time span of the analyses (Fabra and Toro, 2005; Fabra and Reguant, 2014;

Reguant, 2014).

Third, we provide key insights into the ongoing debate about renewable pricing

schemes by focusing on the largely unexplored issue of how they affect firms’ bidding

incentives for given capacities. This is a required first step towards analyzing the en-

dogenous choice of long-run variables such as entry, exit, or the capacity and location of

the new investments. To our knowledge, only a few papers explore this question. From a

theoretical perspective, Dressler (2016) highlights that Feed-in-Tariffs (FiT) act like for-

ward contracts.10 From an empirical perspective, Bohland and Schwenen (2021) explore

the market power impacts of a voluntary change in the pricing scheme in the Spanish

Electricity market during 2005, a period when renewables represented less than 10% in

the energy mix.

Finally, our work complements the growing literature on the short-run and long-run

effects of renewables, including their impacts on energy prices (Gowrisankaran, Reynolds

and Samano (2016); Genc and Reynolds (2019); Acemoglu, Kakhbod and Ozdaglar

(2017)), the nature of competition (Fabra and Llobet (2021)), emissions (Cullen (2013)

and Novan (2015)), and profits earned by the conventional producers (Bushnell and No-

van (2018); Liski and Vehviläinen (2020)). Nonetheless, all these papers apply to settings

in which renewables are exposed to market prices but do not analyze the effects under

fixed prices.

The remainder of the paper is organized as follows. Section 2 builds and solves a model

of competition across sequential markets when firms are subject either to market prices

or to fixed prices. Section 3 provides an overview of the institutional setting and data

used in the analysis. Section 4 performs the empirical analysis and Section 5 concludes.

Proofs and extensions are postponed until the Appendix.

2 The Model

We develop a simple model of strategic bidding in electricity markets. Our model com-

bines ingredients in Ito and Reguant (2016), who study bidding behavior in sequential

markets, with ingredients in Acemoglu, Kakhbod and Ozdaglar (2017), who study the

price impact of renewable energies. Our model adds the analysis of alternative pricing

10However, Dressler (2016) abstracts from the impacts of FiT on price arbitrage and focuses instead on

the impacts on forward trading. She finds that FiT might crowd out other forms of forward contracting,

in line with Ritz (2016).
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schemes for renewables. Similar to those models, and in line with Allaz and Vila (1993),

we abstract from uncertainty and risk aversion.

Markets Electricity is traded in two sequential markets: a day-ahead market (t = 1)

and a spot market (t = 2). Total forecasted demand is inelastically given by A, and it

is fully cleared in the day-ahead market. The spot market allows firms to reshuffle their

day-ahead commitments, while total demand remains fixed at A. With demand being

inelastic, total welfare only depends on productive efficiency, which is a function of spot

prices, while consumers’ surplus depends on day-ahead market prices only.11

Technologies and Firms Electricity is produced by two types of technologies (renew-

able and conventional) and two types of firms (one dominant firm and a set of fringe

firms, respectively denoted by i = d, f).12 Each of the fringe firms owns either renewable

or conventional energy, while the dominant firm (might) own both.

The dominant firm’s conventional technology has constant marginal costs of produc-

tion, c > 0, while the fringe’s conventional technology has increasing marginal costs q/b.13

In contrast, renewables (generically referred to as wind) allow firms to produce at zero

marginal costs up to their available capacities. We use k and w to denote wind’s maxi-

mum and available capacity,14 with k ≥ w. The dominant firm owns a fraction δ ∈ [0, 1]

of k and w, while the fringe owns the remaining (1− δ) share. We refer to δ as the degree

of diversification: if δ = 0 the dominant firm only owns the conventional technology,

while it also has an increasing share of renewables the higher δ.

Throughout, we assume that the conventional technology is needed to satisfy total

demand, i.e., D(c)− w > 0, making c the relevant marginal cost.

11This is particularly true in the Spanish electricity market, where the default is that households pay

a passthrough of the hourly day-ahead market prices (i.e., the Real Time Prices). The default contract

provides the price reference for the contracts that are offered in the retail market for those consumers

who opt-out of the default. See Fabra et al. (2021) for a description.
12Allowing for n > 1 Cournot competitors leads to similar results as those reported here. See Appendix

A.2 for the full analysis.
13We could assume that marginal costs are higher in the spot market, reflecting the fact that the costs

of adjusting production tend to be higher close to real-time. The main results remain unchanged.
14This assumes that firms are able to perfectly predict their available capacities. Fabra and Llobet

(2021) report empirical evidence on the wind forecast errors in the Spanish electricity market and show

that these tend to be small. Still, the results of the model would not change if one interprets w as

expected wind output rather than actual wind.
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Firms’ Behavior The dominant firm sets prices in both markets,15 taking into account

the production decisions of the fringe firms, which are assumed to be price-takers. In

the day-ahead market, the fringe firms offer their conventional output at marginal cost,

i.e., they supply bp1. In the spot market, if p2 increases above p1, they find it optimal

to increase their conventional output, i.e., their additional supply in the spot market is

b (p2 − p1) . In contrast, if p2 falls below p1, they find it cheaper to buy back some of

their day-ahead commitments instead of satisfying them with their own production, i.e.,

they demand b (p1 − p2) in the spot market. In turn, since renewable energies have zero

marginal costs but limited capacity, the fringe firms have to decide whether to sell their

output (1− δ)w in the day-ahead market and/or in the spot market. Their incentives

depend on the pricing scheme in place.

Pricing Schemes for Renewables We consider two commonly used pricing schemes:

renewable producers receive fixed prices for their output, regardless of whether they sell

it at t = 1 (day-ahead) or t = 2 (spot); or renewables are paid at market prices, i.e., the

prices of the market in which they sell their output, plus a fixed premium.

2.1 No Arbitrage

We first consider the case in which renewable producers are not allowed to arbitrage price

differences across sequential markets as they are required to offer all their output in the

day-ahead market. The residual demands faced by the dominant firm in the day-ahead

market and in the spot market are thus given by

D1(p1) = A− bp1 − (1− δ)w (1)

D2(p1, p2) = b(p2 − p1). (2)

We solve the game by backward induction. In the spot market, once p1 is chosen, the

dominant firm sets p2 so as to maximize its profits. Under both pricing rules, the profit

maximization problem in the spot market can be written as

max
p2

[p2D2(p1, p2)− c (D1(p1) +D2(p1, p2)− δw)] . (3)

Solving the first order condition for p2,
16

p∗2 = c+D2(p1, p
∗
2)

∣∣∣∣∂D2(p1, p
∗
2)

∂p2

∣∣∣∣−1 . (4)

15Since we are dealing with a single dominant firm, results would be the same if the firm chose

quantities instead of prices. See Appendix A.2 for details.
16In the oligopoly model, the residual demands in the first order conditions should be interpreted as

net of the rivals’ production.
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This shows that the firm sets a spot price above its marginal cost p∗2 > c. The

markup is increasing in p1 given that a higher p1 enlarges the spot market demand.

In the day-ahead market, under market prices, renewable output is paid at p1 plus a

fixed premium p. Hence, the dominant firm’s profit maximization problem is

max
p1

[
p1D1(p1) + p∗2 (p1)D2 (p1, p

∗
2)− c (D1(p1) +D2 (p1, p

∗
2)− δw) + δwp

]
. (5)

Under fixed prices, renewable output is paid at p. This reduces the dominant firm’s

price exposure, as shown in the first term of the following profit expression,

max
p1

[p1(D1 (p1)− δw) + p∗2 (p1)D2 (p1, p
∗
2)− c (D1(p1) +D2 (p1, p

∗
2)− δw) + δwp] . (6)

Using the indicator I = 0 for market prices and I = 1 for fixed prices allows us to

write the solution to the first order condition of profit maximization in the day-ahead

market under both pricing rules as follows,

p∗1 = p∗2 + [D(p∗1)− w (1− δ)− Iwδ]
∣∣∣∣∂D(p∗1)

∂p1

∣∣∣∣−1 , (7)

This expression makes it clear that the spot price is the opportunity cost of sales in the

day-ahead market. Hence, the dominant firm optimally sets p∗1 with a markup over p∗2.

Such a markup depends on the pricing rule in place. In particular, the marginal gains

from increasing p1 are lower under fixed prices (I = 1), given that the dominant firm’s

renewable output (wδ) does not benefit from the price increase.

It follows that, all else equal, the markup in the day-ahead market is lower under

fixed prices than under market prices. A lower day-ahead markup reduces the size of the

spot market, which in turn implies that the spot price under fixed prices is lower than

under market prices, i.e., pM2 > pF2 > c where we have used super-scripts M and F to

denote equilibrium outcomes under market prices and fixed prices, respectively. In turn,

these two results imply that the day-ahead price is also lower under fixed prices, i.e.,

pM1 > pF1 > c. The underlying reason is that fixed prices act as a forward contract over

the firm’s renewable sales. We refer to this as forward contract effect.

Our first lemma summarizes these results.

Lemma 1 Suppose that arbitrage is not allowed. In equilibrium,

(i) pM1 > pM2 > c.

(ii) pF1 > pF2 > c.

(iii) pM1 > pF1 and pM2 > pF2 > c.
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2.2 Limited Arbitrage

Given the positive differential across the day-ahead and spot prices, there are profitable

arbitrage opportunities. These involve selling output in the day-ahead market at a high

price and re-buying it in the spot market at a lower price. If there are no limits on

arbitrage, and if arbitrage is competitive, the price differential across markets is competed

away until the day-ahead and the spot prices convergence, p1 = p2.

However, in many electricity markets in practice (including the one in our empirical

application), market rules impose limits on arbitrage. Typically, all transactions need to

be backed by physical assets, thus implying that arbitrage can only come from market

agents and only up to their capacities. This leaves some scope for wind producers to

engage in arbitrage as the capacity constraint w ≤ k is rarely binding. Even though the

final production of the fringe renewable producers is fixed at (1− δ)w, they can thus gain

from selling (1− δ) k in the day-ahead market at a high p1 and buying back their excess

commitment (1− δ) (k − w) in the spot market at a low p2. We refer to this strategy

as overselling.17 Throughout, we are going to assume that the arbitrage constraint is

binding, i.e., overselling (1− δ) (k − w) does not lead to full price converge between the

day-ahead and the spot markets.

When renewables are exposed to market prices, the fringe renewable producers have

incentives to engage in arbitrage to increase their profits. Hence, the residual demands

faced by the dominant firm in both markets are now given by

D1(p1) = A− bp1 − (1− δ) k

D2(p1, p2) = b(p2 − p1) + (1− δ) (k − w)

The reduction (increase) in day-ahead (spot) demand implies that the day-ahead

(spot) price goes down (up) as compared to the case with no arbitrage (Lemma 1). We

refer to this as the arbitrage effect.

This effect is not present under fixed prices, given that fringe firms have no incentives

to engage in arbitrage: they obtain the same price regardless of whether they sell their

renewable output in the day-ahead or in the spot market. For this reason, and in line

with the empirical evidence, we assume that they offer all their renewable output in

the day-ahead market.18 Accordingly, the residual demands faced by the dominant firm

remain as in (1) and (2), and equilibrium prices remain as in Lemma 1.

17Note that this arbitrage is purely financial. The fringe firms’ renewable output is fixed at (1− δ)w,

but they can gain by deciding which fraction of that output they buy or sell in each market.
18Note that it is never in the interest of the dominant firm to engage in arbitrage, as that would only

serve to mitigate its own market power.
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Therefore, the comparison of equilibrium prices across pricing rules essentially boils

down to the comparison between the forward contract and the arbitrage effects : the

former applies under fixed prices only, the latter applies under market prices only.

Proposition 1 Under limited arbitrage, the comparison of equilibrium prices across

pricing schemes shows that:

(i) pF1 < pM1 if and only if the degree of diversification is sufficiently high,

δ > (k − w)/(k + w).

(ii) pF2 < pM2 .

Proposition 1 above shows that the comparison of day-ahead prices depends on the

degree of diversification. The forward contract effect under fixed prices depends posi-

tively on the dominant firm’s renewable output (weaker incentives to exercise market

power), while the arbitrage effect under market prices depends negatively on the fringe’s

renewable production (weaker ability to arbitrage). Hence, when the degree of diversifi-

cation is high (low) the forward contract effect under fixed prices is strong (weak) while

the arbitrage effect under market prices is weak (strong). It follows that day-ahead prices

are relatively lower (higher) under fixed prices when the degree of diversification is suffi-

ciently high (low).19 On the extremes, if the dominant firm does not own any renewable

energies, the day-ahead market price is unambiguously lower under market prices. To the

contrary, if it owns them all, the day-ahead market price is unambiguously lower under

fixed prices.

In contrast, fixed prices always give rise to lower spot prices, regardless of the degree

of diversification. Intuitively, the arbitrage effect under market prices translates into

higher spot market demand, which pushes spot prices up. Instead, the forward contract

effect under fixed prices weakens the incentives of the dominant producer to raise the

day-ahead price, which leads to a reduction in spot market demand and in spot prices.

Our next proposition provides comparative static results regarding the impact of

renewable output w on equilibrium prices (referred to as the ‘merit order effect’), which

might depend on the degree of diversification δ.

19In Appendix A.2 we show that with n firms, the threshold on δ is increasing n, from (k−w)/(k+w)

for n = 1 up to (k−w)/k for n→∞; see expression (36). Therefore, the more competitors there are, the

more likely it is that day-ahead prices will be relatively lower under market prices. In any event, note

that the threshold on δ is always strictly lower than 1. Hence, even under perfect competition (n→∞),

there are parameter values for which fixed prices lead to relatively lower day-ahead prices as compared

to market prices.
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Proposition 2 Comparative statics of equilibrium prices with respect to renewable out-

put show that:

(i) Equilibrium prices in all markets are strictly decreasing in renewable output under

fixed prices, and weakly so under market prices (merit order effect): for t = 1, 2,

∂pFt /∂w < 0, and ∂pMt /∂w ≤ 0.

with strict inequality if and only if δ < 1.

(ii) The merit order effect in the day-ahead market is stronger under fixed prices:

|∂pF1 /∂w| > |∂pM1 /∂w| ≥ 0.

(iii) The merit order effect is independent of the degree of diversification under fixed

prices. In contrast, under market prices, the merit order effect is mitigated by an increase

in diversification, particularly so in the spot market: for t = 1, 2.

∂pFt /∂w∂δ = 0, and ∂pM2 /∂w∂δ > ∂pM1 /∂w∂δ > 0.

(iv) Equilibrium price differences across markets are decreasing (increasing) in re-

newable output under fixed prices, but they are increasing under market prices:

∂∆pF/∂w < 0, and ∂∆pM/∂w ≥ 0,

with strict inequality if and only if δ < 1.

As stated in point (i) of the Proposition, an increase in renewable output pushes

day-ahead prices down, independently of the pricing scheme in place. Our results shed

new light on this price depressing effect, or merit-order effect, as described below.

Point (ii) shows that the merit order effect not only depresses day-ahead prices, but

spot prices as well, leading to improved cost efficiency. The reason is that lower day-

ahead prices make the spot market smaller, leading to reduced spot prices. It further

shows that the intensity of the merit order effect depends on the pricing rule in place. In

particular, as wind output increases, day-ahead prices fall more under fixed prices. The

reason is that, under fixed prices, an increase in wind output reduces the degree of market

power exercised by the dominant firm while it increases the supply of the fringe wind

producers. In contrast, under market prices, an increase in wind reduces the fringe’s

ability to engage in arbitrage. A similar reasoning underlies point (iv), which shows that

the merit order effect is decreasing in the degree of diversification under market prices,

but it is independent of it under fixed prices.

Last, point (iv) shows that renewable energies also affect price differences across

markets. Again, and for similar reasons as above, the effects differ across pricing rules:

wind output reduces the price differences across markets under fixed prices, while it

widens those differences under market prices.
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2.3 Welfare Analysis

Consumer surplus depends on day-ahead prices only,20 while the deadweight loss depends

on spot prices only. Hence, the welfare analysis follows directly from Proposition 1.

Corollary 1 The welfare comparison across pricing schemes shows that:

(i) Consumer surplus is higher under fixed prices than under market prices if and

only if the degree of diversification is sufficiently high,

δ > (k − w)/(k + w).

Under both pricing rules, consumer surplus is increasing in renewable output w, although

under market prices, the increase in consumer surplus is decreasing in diversification δ.

(ii) The deadweight loss is always lower under fixed prices than under market prices.

Under both pricing rules, the deadweight loss is decreasing in renewable output w, although

under market prices, the reduction of the deadweight loss is decreasing in the degree of

diversification δ.

Overall, the deadweight loss is lower under fixed prices than under market prices.

However, the difference in consumer surplus depends on the degree of diversification.

When δ is low (high), prices for consumers are relatively higher (lower) under fixed

prices, and so consumers are worse (better) off.

In the case of low δ, the choice of pricing rules is thus faced with a standard trade-

off as fixed prices give rise to greater efficiency but lower consumer surplus. Indeed,

consumers are better off when renewables are exposed to market prices, while firms’

profits are higher when paid at fixed prices.

For consumers, the ideal world would be one with single technology firms and full

market price exposure for renewables. However, if the degree of diversification is high

and regulators cannot reduce it (e.g., by forcing divestitures), such a trade-off disappears

as fixed prices give rise to both higher efficiency and higher consumer surplus.

Our model helps understand how renewables pricing schemes affect day-ahead and

spot prices through the degree of price exposure. However, it does not aim to provide

an answer as to which pricing rule should be adopted. There are two main reasons for

this. First, our model relies on the comparison of equilibrium outcomes across pricing

rules for given capacities. However, pricing rules could also affect investment decisions

20Consumer payments also depend on the fixed tariff p and the fixed premium p. To compare consumer

payments, we are implicitly holding the budget commitment fixed, i.e., p and p are such that at the

competitive solution, consumers would pay the same under both pricing policies.
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(how much to invest, which technology to choose), ultimately affecting efficiency beyond

the market price impacts. Among the efficiency effects, investments in the various re-

newable technologies could have distinct impacts on the displaced carbon emissions, on

the learning externalities, or on other spillover effects, but these are not captured in the

model. Furthermore, we have not compared the prices actually paid by consumers to

renewables, which also depend on p under fixed prices and p under market prices. These

prices are fixed by the time firms bid in the day-ahead and spot markets and therefore do

not affect their bidding behavior, which is the subject of our analysis. Nonetheless, the

values of p and p, which we have assumed exogenous, impact how much consumers end

up paying for renewables, possibly through fixed fees or through general taxation. Last

but not least, our stylized model leaves some real-life nuances out that could potentially

affect market outcomes (e.g., uncertainty and risk aversion).

2.4 Testable Predictions

The actual Spanish market (as well as electricity markets elsewhere) is more complicated

than our stylized model. Hence, it is important to first test whether firms actually behave

as predicted by the model despite the more complicated real-world market in which they

interact. Ultimately, we want to obtain empirical evidence which helps us understand

whether consumers are better off or worse off when renewables are paid at fixed prices

relative to market prices. We group our testable predictions in three blocks:

(i) Forward contract effect: Under fixed prices, for given residual demands, day-

ahead market prices should be decreasing in the strategic firms’ wind output. This

effect should not be present when firms are fully exposed to market prices.

(ii) Arbitrage effect: Under market prices, fringe producers have incentives to oversell

in the day-ahead market. Their incentives to do so should be greater as the expected

price differential across markets gets larger. This effect should not be present under

fixed prices. Furthermore, the comparative statics of price differences differ across

the two pricing schemes: price differences should decrease (increase) in wind output

under fixed (market) prices.

(iii) Effects on consumers: Consumer surplus depends on day-ahead prices, which

are higher under market prices relative to fixed prices if the forward contract effect

dominates the arbitrage effect, and vice-versa, an issue that depends on whether

the degree of diversification is sufficiently high or not. The empirical analysis will

reveal which of the two effects dominate in the Spanish electricity market.
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Before we take these predictions to our empirical analysis, we first describe some of

the institutional details of the Spanish electricity market.

3 Context and Data

In this section, we describe the institutional setting, which is key for understanding the

pricing incentives faced by the Spanish electricity producers. We also describe our data

sources.

3.1 Market Design and Regulation

The Spanish electricity market is organized as a sequence of markets: the day-ahead

market, seven intraday markets that operate close to real-time, and several balancing

mechanisms managed by the System Operator. In order to participate in these markets,

plants must have offered their output in the day-ahead market first. Electricity producers

and consumers can also enter into bilateral contracts and they have to communicate the

quantities under those contracts to the Market Operator or auctioneer, on an hourly

basis one day ahead.

In our empirical analysis, we analyze bidding in the day-ahead market and arbitrage

between the day-ahead market and the first intraday market (which we refer to as the

spot market). Both markets cover the vast majority of all trades, contributing to approx-

imately 80% of the final electricity price. The day-ahead market opens every day at 12

pm to determine the exchange of electricity to be delivered each hour of the day after.

It is organized through a uniform-price central auction mechanism. On the supply side,

producers submit price-quantity offers specifying the minimum price at which they are

willing to produce with each of their units. The demand side works as a mirror image.

The auctioneer ranks the supply bids in an increasing order and the demand bids in a

decreasing order to construct the aggregate supply and demand curves, respectively. The

market clears at the intersection of the two: the winning supply (demand) units are those

that bid below (above) the market-clearing price. All winning units receive (pay) such

price.

The intraday markets work in a similar fashion as the day-ahead market, with the

difference being that all units—regardless of whether they are supply or demand units—

can enter both sides of the market in order to fine-tune their day-ahead commitments.

For instance, if a supplier wants to sell less (more) than its day-ahead commitment, it can

submit a demand (supply) bid in the intraday markets. The same applies to consumers.
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The first intra-day market opens at 4pm on the day-ahead, 4 hours after the day-ahead

market. Because of their volume of trade, our empirical analysis will focus on comparing

the day-ahead market and the first intra-day market. Firms face a fine if their actual

production deviates from their final commitment, which provides strong incentives to

avoid imbalances.

In some cases, non-strategic reasons can give rise to differences between the day-

ahead and the final commitments. For instance, a plant might suffer an outage after the

day-ahead market has closed, forcing it to buy back whatever it committed to produce.

Similarly, a renewable producer might have to buy or sell additional output if its wind

or solar forecasts turn out to be wrong.

In other cases, such differences might be explained by strategic considerations. In

particular, if market agents expect a positive price difference between the day-ahead and

intraday markets, they might want to engage in arbitrage. Producers oversell in the

day-ahead market at a high price and buy back their excess production in the intraday

market at a lower price. Similarly, suppliers delay their purchases to the intraday market

as much as they can.

As we considered in the theoretical analysis, the rules of the Spanish electricity market

impose some constraints on arbitrage. In particular, supply (demand) bids have to be

tied to a particular generation (consumption) unit, and the quantity offered (demanded)

cannot exceed their maximum production (consumption) capacity. This implies that

renewable plants (or big consumers and suppliers) have relatively more flexibility to

arbitrage than coal or gas plants, which often operate at full capacity. For instance,

renewables can offer to produce at their nameplate capacity in the day-ahead market

even when they forecast that their actual available capacity will be lower. Likewise,

suppliers can commit to consume below or above their expected consumption knowing

that they will have more opportunities to trade in the intraday markets.

Beyond differences in the ability to arbitrage, the regulation also introduces differences

in their incentives to do so, across technologies and market agents. Renewable producers’

incentives to arbitrage depend on the pricing scheme in place, while big customers and

suppliers are always encouraged to arbitrage price differences (since they face full price

exposure, they keep any potential profits from arbitrage). We next describe the pricing

schemes of Spanish renewables, which are central for our identification strategy.
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3.2 Pricing Schemes for Renewables

The pricing schemes for Spanish renewables have been subject to various regulatory

changes.21 In our empirical analysis, we will exploit the occurrence of the two most

recent regulatory changes affecting wind producers.

Prior to February 2013, the existing regulation (Royal Decree 661/2007) gave all

wind producers the ability to choose between two pricing schemes: either a market-based

scheme (Feed-in-Premium or FiP) or a fixed price scheme (Feed-in-Tariff or FiT). Under

the FiP option, wind producers had to sell their electricity directly into the wholesale

market and would receive a premium payment on top. Under the FiT option, wind

producers were obliged to bid their output at a zero price into the wholesale market and

would receive a fixed price for it (RD 661/2007; article 31). Since expected payments

under the FiP option were notably higher than under the FiT option, all wind operators

had opted for the former. We label this regime as Regime I - Market Prices. On 2

February 2013 (Royal Decree Law 2/2013), the Government decided to abolish the FiP

option “without any former notice”,22 all wind producers were de facto moved from FiP

to FiT.

The FiT regime—which we label as Regime II - Fixed Prices—only lasted until June

2014, when the government published the details for computing a new remuneration for

each type of renewable installation (the Royal Decree 413/2014 was published on June

6, and Ministerial Order IET 1045/2014 that came into force on June 21).23 In two

earlier pieces of legislation (Royal Decree 9/2013 on July 14, 2013, and Law 26/2013 on

December 27, 2013), the Government had already announced the main guidelines of the

new regulation, but it did not actually implement it until June 2014.24

In general terms, the new scheme that was introduced in June 2014 (labelled as

Regime III - Market Prices) moved all renewable producers to FiP. Under this regulation,

which is still in place, renewables have to sell their production into the Spanish electricity

21See del Rio (2008) for an overview of the changes up to 2007, and Mir-Artiguesa, Cerda and del Rio

(2014) for the 2013 reform.
22The quotes are taken from ‘Pain in Spain: New Retroactive Changes Hinder Renewable Energy’,

published in April 2013 at www.renewableenergyworld.com. Similar quotes can be found in other indus-

try publications.
23Various reasons explained these changes, including the regulator’s lack of a forward-looking under-

standing of market performance as well as the attempt to hide payment cuts under the change of pricing

format. Prior to 2013, market prices were relatively higher as compared to the fixed prices. Hence, the

regulator thought that by moving wind producers to the fixed price regime their payments would be

reduced. The opposite occurred prior to the 2014 regulatory change.
24We have ran placebo tests with these announcement dates, which show that these laws had no

influence on firms’ bidding behavior.
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wholesale market and receive the market price for such sales plus additional regulated

payments.25 The latter is based on technology and vintage specific standards, and are

thus independent of the actual market revenues made by each firm. In particular, the old

wind farms (i.e., those that were commissioned before 2005) do not receive any additional

payment under the premise that they had previously received enough revenues to cover

their construction costs. Hence, there exist some differences between the pre-February

2013 regulation (Regime I) and the post-June 2014 regulation (Regime III), mainly in

the level of support. Nonetheless, the two regulations have one thing in common: they

expose renewable producers to market-based prices, which is our focus.

3.3 Data

We use different sources of data on bids, marginal costs, renewable production (actual

and forecasts), and weather data. First, we use detailed bid data from the Iberian market

operator (OMIE), which reports all the supply and demand functions submitted by all

plants, every hour, in the day-ahead market as well as in the intraday markets. We match

the bid data with the plant characteristics data to obtain information on their owners

and types (e.g., for supply units, we know their technology and maximum capacity;

for demand units, we know whether they are big customers with direct market access,

suppliers of last resort, or liberalized suppliers). With these bid data, we can construct

each firm’s residual demand by subtracting the supply functions of all its competitors from

the aggregate demand curve. We also observe the market-clearing price, the marginal

unit that set that price, and the units that submitted prices close to that price.

Second, we have data on the cost characteristics of all the coal plants and Combined

Cycle Gas Turbines (CCGTs), including their efficiency rates (i.e., how much fuel they

burn per unit of electricity) and their emission rates (i.e., how much carbon they emit

per unit of electricity). Together with Bloomberg daily data on coal prices (API2), gas

prices (TTF), and CO2 prices (ETS), we compute engineering-based estimates of each

thermal plant’s marginal cost on a daily basis.26 While these are reliable cost data

25These include a remuneration per MW of installed capacity (meant to compensate those construction

costs that cannot be reasonably recovered through the market) and a remuneration per MWh produced

(meant to cover the costs of operating the plants). These two regulated payments are based, not on the

actual construction costs or market revenues of the plant, but rather on those of a so-called efficient and

well-managed company subject to technology-specific standards.
26A 7% tax was levied at the start of 2013 on all electricity producers, including both conventional

and renewables. We take this into account when computing marginal costs in our empirical analysis.
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sources,27 we cannot rule out measurement errors. For instance, the price of coal and gas

in international markets need not reflect the correct opportunity cost firms face when

burning their fossil fuels. This might be due to transaction costs, transportation costs,

or contractual constraints on firms’ ability to resell the gas bought through long term

contracts. Indeed, large disparities between the load factors of various CCGTs in the

market suggest that one of the strategic firms might have had access to gas prices below

the ones in the international exchanges.28

Third, we use publicly available data provided by the System Operator (REE) on

the hourly production of all the plants in the Spanish electricity market, including the

fractions that were sold through the market or through bilateral contracts.29 These data

allow us to compute, on an hourly basis, the market shares by technologies (including

renewables) and by firms. Since we observe the supply and demand allocated to the ver-

tically integrated firms, we can compute their hourly net positions, i.e., their production

net of their bilateral contracts and vertical commitments.30 Furthermore, by computing

each plants’ day-ahead and final commitments, we can assess whether firms engaged in

arbitrage across markets. The System Operator also provides detailed information on

the hourly demand and wind forecasts one day ahead, right before the market opens.

Last, we also use publicly available daily weather data (including temperature, wind

speed, and precipitation) provided by the Spanish Meteorological Agency (AEMET).

In order to encompass the two main regulatory changes affecting renewables in the

Spanish electricity market, the time frame of our empirical study runs from February

2012 until January 2015. During this period, there were no major capacity additions

27The cost parameters were provided to us by the Spanish System Operator (REE) and were previously

used in Fabra and Toro (2005) and Fabra and Reguant (2014). We have recently updated them to include

the new capacity additions. The efficiency and emission rates are in line with standard measures for

each technology, but incorporate finer heterogeneity across plants, e.g., reflecting their vintage, or, for

the coal plants, incorporating the exact type of coal they burn which affects both their efficiency as well

as their emission rate.
28For instance, as reported by REE, in 2014 Gas Natural’s CCGTs had the highest load factors (22%

on average, as compared to 4% of all the other CGGTs). Notably, this was true also for twin CCGTs

(i.e., at the same location and same vintage, owned by different companies). For instance, Besos 4 owned

by Gas Natural operated at a 65% load factor, while Besos 3 owned by Endesa operated at an 8% load

factor. The same was true for San Roque 1 (owned by Gas Natural, 59% load factor) and 2 (owned by

Endesa, 12% load factor).
29One drawback of these data is that it does not include information on the units located in Portugal.

However, as these plants were not affected by the regulatory changes implemented by the Spanish

Government, we exclude them from the analysis.
30We do not include those vertical commitments that are due to regulated sales since these are simply

passed-through to final consumers.
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or other relevant changes in the market structure. There were three main vertically-

integrated firms, which we refer to as the strategic firms : Iberdrola (firm 1), Endesa

(firm 2), and Gas Natural (firm 3). They all owned various technologies, with differences

in the weight of each technology in their portfolios. Notably, Iberdrola was the largest

wind producer, while Gas Natural was the main owner of CCGTs.31 There was also a

fringe of conventional producers, renewable producers, and independent suppliers. The

market share for the strategic firms was relatively lower in the renewable segment than

in the conventional segment. Annual renewable production ranged from 42% to 45% of

total generation, and the rest came from nuclear (19%), hydro (10% to 18%), coal (13%

to 15%) and CCGTs (3% to 9%).

Table 1 reports the summary statistics. We use hourly data in all of our analyses:

there were a total of 26,304 hourly observations, split into 8,784 observations for the first

period with market prices (Regime I, from 1 February 2012 to 31 January 2013), 12,120

observations for the period with fixed prices (Regime II, from 1 February 2013 to 21

June 2014) and 5,400 observations for the second period with market prices (Regime III,

from 22 June 2014 to 31 January 2015). The day-ahead price ranged between 38 to 52

Euro/MWh, being lower on average but also more volatile during Regime II. This could

partly be explained by the higher wind availability (the average hourly wind forecast was

6.5 GWh during Regime II, above the 5.7 GWh and 5.0 GWh for Regimes I and III).32

The spot market price was consistently lower than the day-ahead price. The average

price differential across the two markets ranged between 0.3 and 1.2 Euro/MWh, being

smaller during Regime III. Demand net of wind forecasts was similar on average across

all three periods, if anything only slightly higher under Regime I.

A first look at the data. It is illustrative to provide a first look at the raw data.

The upper panel of Figure 1 plots the difference between the day-ahead and the final

output commitments for wind plants belonging to the fringe and to the strategic firms

(positive numbers reflect overselling in the day-ahead market, while negative numbers

reflect withholding). As can be seen, when paid according to fixed prices (Regime II),

the fringe wind producers did not engage in arbitrage (i.e., on average, they sold all of

their output in the day-ahead market). They also behaved fairly similarly as the strategic

31This explains why Gas Natural is the price-setter during a large fraction of the time. Differences

could also be due to the different degree of market power of the vairous players. Together with the fact

that Gas Natural had long-term contracts for gas at prices below the international spot price for gas,

explains (together with the contract clauses that often do not allow for resale) why we sometimes find

negative markups in the day-ahead market prices.
32Also, coal and gas prices were more volatile during Regimes II and III relative to Regime I.
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Table 1: Summary Statistics

Regime I Regime II Regime III

Mean SD Mean SD Mean SD

Price day-ahead 50.2 (13.8) 38.1 (22.2) 52.0 (11.2)

Price intra-day 1 48.9 (14.2) 37.2 (22.1) 51.7 (11.7)

Price premium 1.2 (5.0) 1.0 (5.6) 0.3 (3.9)

Marginal cost 47.5 (6.6) 42.3 (7.2) 37.0 (3.8)

Demand forecast 29.8 (4.8) 28.5 (4.6) 28.1 (4.3)

Wind forecast 5.7 (3.4) 6.5 (3.6) 5.0 (3.2)

Dominant wind share 0.6 (0.0) 0.7 (0.0) 0.6 (0.0)

Fringe wind share 0.4 (0.0) 0.3 (0.0) 0.4 (0.0)

Installed capacity wind 22.76 23.01 23.03

Dominant non-wind share 0.8 (0.0) 0.8 (0.1) 0.8 (0.1)

Fringe non-wind share 0.2 (0.0) 0.2 (0.1) 0.2 (0.1)

Installed capacity non-wind 99.82 100.16 100.08

Notes: Sample from 1 February 2012 to 31 January 2015. Regime I is from 1 February 2012 to 31

January 2013; Regime II is from 1 February 2013 to 21 June 2014; Regime III is from 22 June 2014 to

31 January 2015. Prices and marginal cost are expressed in Euro/MWh. The marginal cost refers to

the marginal cost of the last unit produced. Demand forecasts and wind forecasts express the average

hourly values during each Regime, in GWh. Installed capacities are expressed in GW.

firms. Instead, when paid according to market prices (Regimes I and III), the fringe wind

producers actively engaged in arbitrage by overselling their wind output in the day-ahead

market.33 The smaller amount of arbitrage by wind plants during Regime III is likely

due to price differences across markets being narrower (see Table 1). The change in

the pricing schemes also had a strong impact on the strategic producers’ behavior. The

strategic producers withheld more wind output across markets when exposed to market

prices, notably so after the switch from Regime II to III.34 This is paralleled by a sharp

increase in the price-cost margin in the day-ahead market during Regime III, as can be

seen in the lower panel of Figure 1.

33This is consistent with Ito and Reguant (2016), who showed that fringe firms stopped arbitraging

after the switch from market prices to fixed prices (from Regime I to II). Our results further show that

they resumed arbitrage after the switch from fixed to market prices (from Regime II to III).
34Figure 4 in Appendix B shows that these effects showed up not only on average, but also across all

hours of the day, particularly so at peak times.
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Figure 1: Wind sales across markets, day-ahead prices and marginal costs

Notes: The upper figure shows the day-ahead production commitments relative to final production. If

the day-ahead commitment exceeds (is lower than) the final production, the value reported is greater

(lower) than 0 and we refer to this as overselling (withholding). Data are reported for the wind producers

belonging to the strategic firms (solid line) and to the fringe firms (dash line). The lower figure shows

the weekly average of hourly day-ahead prices (solid line) and the engineering estimates of marginal

costs (dash line). The vertical lines date the changes in the pricing schemes for renewables.
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In sum, these figures suggest that changes in the pricing schemes had a strong impact

on firms’ bidding behavior, and the resulting degree of market power in the day-ahead

market. In the next sections, we undertake an empirical analysis to uncover the channels

by which renewables price exposure affected market power in the day-ahead market as

well as their incentives to arbitrage across markets. This analysis will further reveal

whether, in the Spanish case, consumers were better off or worse off when renewables

were exposed to changes in market prices.

4 Empirical Analysis

In this section, we perform an empirical analysis of the market impacts of renewables

pricing schemes. To disentangle the mechanisms at play, we decompose the analysis in

four steps. First, we perform a structural analysis of the determinants of the strategic

firms’ price-setting incentives in the day-ahead market. Second, we use a differences-

in-differences approach to assess the effects of pricing schemes on the fringe’s incentives

to engage in arbitrage. Third, we analyze whether the determinants of price differences

across markets are consistent with the model’s predictions. Last, to assess the overall

impact of the pricing regulation on market power in the day-ahead market, we leverage

on our structural estimates to construct estimates of day-ahead price-cost markups under

the two pricing schemes.

4.1 Price-Setting Incentives in the Day-Ahead Market

We use a structural approach to assess whether the changes in the renewable energies’

pricing schemes affected the price-setting incentives of the strategic producers in the day-

ahead market. Our focus is on whether the strategic firms take into account changes in

their wind output when setting prices, and whether this depends on the pricing scheme

in place, as predicted by our theoretical model.

Empirical Approach. Building on the first-order condition of profit maximization

in the day-ahead market, equation (7), we estimate the following empirical equation in

hours t in which firm i is bidding at or close to the market-clearing price:

bijt = ρp̂2t + β

∣∣∣∣ qit
DR′it

∣∣∣∣+
3∑

R=1

θs
∣∣∣∣ wit

DR′it

∣∣∣∣ Ist + αij + γt + εijt, (8)

where bijt is the marginal bid of firm i when bidding at or close to the market-clearing

price with unit j at time t; p̂2t is the expected spot price at time t; qit is firm i’s total
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sales at time t; DR′it is the slope of firm i’s residual demand at time t at the market-

clearing price; wit is firm i’s wind output at time t; Ist are three indicator variables for

each pricing scheme s (Regimes I, II, and III);35 αij are unit fixed effects, and γt are time

fixed effects. We include unit, quarter, and hour fixed-effects in all specifications, while

linear and quadratic time trends are added in a cumulative fashion. Last, εijt is the error

term clustered at the plant level to allow errors to be correlated within the same plant.36

Variables Description. On the left hand side of equation (8), we include the bids

of all price-setting units belonging to one of the strategic firms,37 plus those within a

5 Euro/MWh range as they have an ex-ante positive probability of setting the market

price. We exclude (i) hydro units (since it is difficult to assess the true opportunity costs

of using their stored water), as well as (ii) units that operate on either the first or last

step in their bidding functions (since their constraints for reducing or increasing their

output might be binding, invalidating the use of the first-order in equation (7)).38

On the right hand side of (8), two variables require further explanations. First, to

compute the expected spot market price (p̂2t), we use information available to firms at the

time the day-ahead market opens. In particular, we regress demand and wind forecasts,

hourly dummies, and date dummies on the observed spot market price, and use the

estimated coefficients to predict p̂2t.
39 Second, to build the realized residual demand

curve faced by each firm (DRit), we fit a quadratic function to the residual demand

curve and calculate its slope at the market-clearing price (see Figures 8 in Appendix B

35We define the indicator variables for Regimes I, II, III using the February 1, 2013 and June 22,

2014 cutoffs, respectively, which is when the regulatory changes were fully implemented, as described in

Section 3.2.
36Our results are robust to several ways of clustering, such as at firm-day, firm-month-year, and

firm-week levels (see Table 6 in Appendix B).
37If a strategic firm owns more than one unit with these characteristics, we include them all in the

analysis.
38We follow a similar approach as Fabra and Reguant (2014) and Reguant (2014).
39The estimating equation is p2t = αDfc

t + βwfc
t + Xt + Yt + εt, where the two first regressors are

the demand and wind forecasts. We allow all the coefficients to vary across pricing regimes, so the

relationship between the spot price, demand, and wind forecasts need not be the same across regimes.

The errors are clustered within day.
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for an illustration).40

Identification. When estimating equation (8), there are at least two identification

challenges. First, the slope of the residual demand at the market-clearing price (DRit) is

likely endogenous, thus making the markup terms endogenous as well.41 Second, other

factors may influence the bids, and hence not properly controlling for them could lead to

omitted variable bias.

To address the first challenge, we instrument DR′it using wind speed and precipitation

(and each of them interacted with three dummies for the pricing scheme) as residual

demand shifters. The exclusion restriction holds under the assumption that, conditional

on unit and time fixed effects, wind speed and precipitation affect firms’ marginal bids

only through our markup parameters. This assumption is plausible and common in the

literature (Fabra and Reguant, 2014; Ito and Reguant, 2016) because wind speed and

precipitation may influence the firm’s inframarginal quantity, but they are unlikely to

influence the marginal bid directly. We then use Two-Stage Least Squares (2SLS) to

estimate equation (8). To address the second challenge, we add a set of flexible controls,

such as time trends, and quadratic time trends, on the top of a set of fixed effects discussed

earlier.

Since we want to understand whether firms’ markups are affected by their wind out-

put, our parameter of interest in equation (8) is θs. We expect it to take a negative value

under fixed prices (Regime II), but we expect it to be not significantly different from

zero under market prices (Regimes I and III). This would reflect that firms do not (do)

take into account the price effects on their wind output when it is paid at fixed (market)

prices.

Results. The results are shown in Table 2. In columns (1)-(3), we constrain the coeffi-

cient on the firm’s markup over its total output to be equal to one. In all specifications,

the p̂2 coefficients are positive, as expected. The results confirm that wind output has

a significant price-depressing effect when renewable output is paid at fixed prices, but it

40Approximating the slope of residual demand is common in the existing literature, see also Wolak

(2003); Reguant (2014); Fabra and Reguant (2014); Ito and Reguant (2016). To avoid the flat region of

the inverse residual demand curve occurred at zero price, which makes our linear approximation poorly

predict the local slopes, we truncate the residual demand to the minimum quantity that firms are willing

to serve at zero price. Note that we also explore the other alternative methods such as kernel smoothing

around the market price (Reguant, 2014) and fitting linear splines with 10 knots to the residual demand

curve. Our conclusions are similar regardless the method of approximation we use.
41Note that, since we use the predicted spot price (p̂2t) based on the public information available to

firm at day-ahead, it is exogenous.
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has a small and noisy effect otherwise, consistently with our predictions. Moreover, these

coefficients are stable across the different specifications, reassuring robustness regardless

of the set of flexible controls we use. In column (4), we allow the coefficient for the firm’s

total output markup to vary. The estimated coefficient for the Regime II indicator vari-

able is still very similar. The sign of the coefficient for the firm’s total output markup is

positive as expected,42 given that greater output and a steeper residual demand enhance

market power.43

It would be misleading to compare the coefficients on the various variables given

that their means are very different. To get some orders of magnitude of the forward

contract effect, one can take for instance the mean of a strategic firm’s hourly wind

production during Regime II, 317.5 MWh, over the mean of the slope of its residual

demand, 404.9 Euro/MWh. Using the estimates in column (1) for instance, an increase in

wind output of ten percent over its mean would imply a price reduction of 1.2 Euro/MWh

(approximately, a 3.1 percent reduction over the average price) during Regime II.

4.2 Arbitrage across Markets

Since day-ahead prices were systematically higher than prices in the spot market, fringe

producers could gain by engaging in arbitrage under Regimes I and III, when they were

exposed to market prices; in particular, by overselling in the day-ahead market at high

prices and buying back their excess supply at the lower spot price. However, differ-

ences between the day-ahead and the final commitments could also be explained by

non-strategic reasons, such as wind or demand forecast errors. What distinguishes arbi-

trage from non-strategic reasons is that the former are linked to price differences across

markets, whereas the latter are not. Accordingly, in order to understand whether pricing

rules affected firms’ incentives to engage in arbitrage, we examine whether the response

42While the sign of the coefficient is as expected, we do not attempt to interpret the magnitude of the

coefficient. The coefficient of qit
DR′

it
may be inflated as qit

DR′
it

is correlated with wit

DR′
it

, with a correlation

coefficient equal to 0.36.
43The firms included in this analysis are vertically integrated. Hence, one could conjecture that they

set prices to maximize the profits of the vertical chain. Table 7 in Appendix B reports the results

accounting for vertical integration. Note that we observe the day-ahead sales and purchases by firms

belonging to the same vertically integrated group, but we do not have information about the forward (sale

or purchase) contracts they may have. Using these data, our main predictions remain valid. However,

relative to the results in Table 2, the coefficients under the Regimes I and III go up, with the former

becoming slightly significant. This is consistent with two hypothesis: firms were only maximizing their

supply-side profits as market power is under-estimated when we take account firms’ net sales; or they

had forward contracts (which we do not observe) that muted the effect of vertical integration.
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Table 2: The Forward Contract Effect

2SLS

(1) (2) (3) (4)

Regime I × wit

DR′
it

6.35 9.31 9.10 5.54

(5.03) (6.28) (6.10) (5.47)

Regime II × wit

DR′
it

-14.2*** -14.5*** -14.9*** -14.3***

(3.03) (2.88) (3.02) (3.24)

Regime III × wit

DR′
it

1.72 0.049 0.60 5.69

(4.10) (3.42) (3.21) (5.24)

p̂2t 0.77*** 0.78*** 0.77*** 0.38***

(0.057) (0.062) (0.062) (0.15)

qit
DR′

it
4.81***

(1.25)

Linear Trends N Y Y Y

Quad. Trends N N Y Y

Observations 19,805 19,805 19,805 19,805

Notes: This table shows the estimation results of equation (8) using 2SLS. All regressions include unit,

firm and quarterly dummies. In columns (2)-(4) we add day-of-the-week dummies, hour fixed effects,

and quadratic time trends in a cumulative fashion. We constrain the coefficient for the markup for firms’

total output to be one in columns (1) to (3), and we relax this by allowing the markup coefficient to

vary in column (4). We limit hourly prices to be within 5 Euro/MWh range relative to the market

price and exclude the outliers (bids with market prices below the 1st percentile and above the 99th

percentile). We instrument our markups with wind speed, precipitation, and each of them interacted

with the three pricing scheme indicators. The standard errors are clustered at the plant level. See Table

6 for alternative ways of clustering.

of overselling to the predicted price differential differed when renewables were paid ac-

cording to fixed prices (Regime II) or market prices (Regimes I and III).

Empirical Approach. Following a DiD approach, we regress the differences between

the day-ahead and the final output commitments on the price differential, interacted with

a dummy variable for each pricing regime. Using this approach, we limit the concern that

other unobservable time-variant factors may also influence arbitrage through the price

differential, therefore leading to an omitted variable bias. Our treatment group is wind
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producers and our two possible control groups are: (1) non-wind renewable producers

(i.e., solar, small hydro and cogeneration units), and (2) suppliers in the liberalized

market.

We split the sample in two, each of which contains one regulatory change. The first

sample (d = 1), which ranges from February 1, 2012, to February 1, 2014, contains the

change from market prices to fixed prices that took place on February 1, 2013. The second

sample (d = 2), which ranges from February 1, 2013, to January 31, 2015, contains the

change from fixed prices to market prices that took place on June 22, 2014.

We run three separate OLS regressions, one for each sample d = 1, 2 and one for each

each control group g= non-wind renewables, suppliers. Note that for sample d = 2, we

cannot use other renewables as the control group given that they were also affected by

the regulatory change. We estimate the following equation, for d = 1, 2,

∆lnqt =α + β1WIdt ∆p̂t + β2W∆p̂t + β3WIdt + β4I
d
t ∆p̂t + β5∆p̂t+

β6W + β7I
d
t + ρXt + ηt

(9)

In equation above, I1t is an indicator for fixed prices (Regime II)—the switch from

market prices to fixed prices. Similarly, I2t is an indicator for market prices (Regime

III)—the switch from fixed prices to market prices. For both samples, W is an indicator

for wind fringe producers. We include a set of control variables such as weather controls

(daily solar radiation time and precipitation), the hourly demand forecast error, the

hourly wind forecast error, week of sample fixed effects, and day-of-week fixed effects, all

captured in Xt. Standard errors are clustered at the week of sample.

Our coefficient of interest, β1, captures the change in the price response of arbitrage

by wind producers relative to the control group. We expect the sign of this coefficient

to be negative using sample 1, as the switch from market prices to fixed prices should

reduce the wind producers’ incentives to engage in arbitrage. On the contrary, we expect

the coefficient for β1 to be positive using sample 2, as the switch from fixed prices to

market prices should induce wind producers to engage in arbitrage again.

A Key Variable. To capture how fringe firms reacted to changes in the price differ-

ential across markets that they could forecast at the time of bidding, we construct the

forecasted price premium (∆p̂t) as follows. First, we use two exogenous variables that

were available to firms prior to bidding: demand and wind forecasts. Similar to how we

compute the expected spot price in Section 4.1, we regress demand and wind forecasts,
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hourly dummies, and date dummies on the price premium.44 We then use the regression

coefficients to obtain the forecasted price premium at time t, ∆p̂t. Using ∆p̂t rather

than the actual price difference is important to rule out potential endogeneity concerns

between arbitrage and price differences.

Parallel Trends. Before we move forward with our DiD estimation in equation (9),

it is important to test if the parallel trends assumption holds. Non-wind renewable

producers were subject to fixed prices under Regimes I and II, and were then exposed to

market prices under Regime III. Hence, their incentives to engage in arbitrage should be

similar to those of wind during Regimes II and III regimes. For this reason, one should

observe parallel trends for wind vs. non-wind renewables during Regimes II and III. The

regulation impact on wind overselling is captured by the difference between wind vs.

non-wind renewables during Regime I. For suppliers, they have incentives to engage in

arbitrage in all periods as they were not subject to price regulation. Hence, we expect

suppliers to engage in arbitrage just like wind under Regimes I and III. For this reason,

one should observe parallel trends for wind vs. suppliers during those regimes. The

regulation impact on wind overselling is captured by the difference between wind vs.

suppliers during Regime II.

To compare the price response of wind producers, non-wind renewable producers, and

suppliers, we first document the response of each group’s arbitrage to the predicted price

premium on a quarterly basis. We regress the forecasted price premium, ∆p̂t, on the

difference between the logs of the day-ahead and the final commitments of firms in group

g (wind producers, non-wind renewable producers, and suppliers), ∆lnqtg. Our sample

includes 13 quarters, from Q1 2012 to Q1 2015. We control for demand and wind forecast

errors, denoted Der
t and wer

t , as these could give rise to differences between day-ahead

and final commitments which are unrelated to arbitrage.45 We also control for seasonality

(i.e., using dummies for days-of-the-week and week of sample), for daily solar radiation

time, daily precipitation, and temperature, all captured in Xt. The estimating equation

is

∆lnqtg =α +
13∑
q=1

θqg∆p̂t + γDer
t + δwer

t + ρXt + ηtg (10)

44 The estimating equation is ∆pt = αDfc
t + βwfc

t + Xt + Yt + εt, where the two first regressors are

the demand and wind forecasts. We also allow all the coefficients to vary across pricing regimes. The

regressions have an R-squared ranging from 0.3 to 0.4.
45Demand and wind forecast errors are computed by subtracting the hourly forecast and the observed

values. The forecast values are publicly available to firms the day before.
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where ηtg is the error term. Our coefficients of interest are θqg, which capture the response

of arbitrage by group g at quarter q to the predicted price differential. We cluster standard

errors at the week of sample.

Figures 2 plots the θqg coefficients from equation (10) for each quarter.46 As expected,

in Figure 2 (a) one can observe that during Regime II (Q1 2013 to Q2 2014), the price

response of arbitrage by the non-wind renewable producers is similar to that of wind

producers and not significantly different from zero. Similarly, Figure 2 (b) shows that

during Regime II (Q1 2013 to Q2 2014), the price response of the suppliers’ arbitrage is

positive and very similar to that of the wind producers during Regimes I and III (2012

and Q3 2014 onwards). Therefore, Figure 2 serves as graphical evidence on the parallel

trend between wind and each of the control groups, during the relevant periods. Table 8

in the Appendix, shows three parallel trend tests: (1) for sample d = 1, during Regime I

the wind producers and the suppliers behave similarly in response to the predicted price

differential (p-value of 0.529); (2) for sample d = 1, during Regime II wind and non-wind

renewables behave similarly (p-value of 0.151); (3) for sample d = 2, during Regime III,

wind and suppliers behave similarly (p-value of 0.503).47

Results. We report the DiD results (β1 coefficients from equation (9)) in Table 3. The

impact of the switch from market prices (Regime I) to fixed prices (Regime II) is shown

in columns (1) and (2), depending on whether we use non-wind renewables or suppliers

as the control group, respectively. In both cases, the negative coefficients show that this

switch reduced arbitrage relative to both control groups, and by a similar magnitude.

In contrast, the impact of the switch from fixed (Regime II) to market prices (Regime

III), shown in column (3), was positive, thus indicating that this switch brought wind

fringe producers back to arbitrage.48 Overall, these results are all consistent with our

predictions.

Having confirmed the empirical relevance of the forward contract and the arbitrage

46For this graphical evidence, hours when the predicted price differential gives a poor prediction for the

observed price differential are excluded (i.e., when the difference between predicted and observed price

differential is above the 50th percentile). Figure 5 in Appendix B shows that, in some hours, the predicted

price differential departs substantially from the observed one, probably due to some unobservables not

included in our estimating equation.
47The complete results with the overselling response to the price premium (and its corresponding

p-values) are reported in Appendix B, Table 8.
48As mentioned earlier, during Regime III, all renewables are exposed to market prices, hence we

expect to see their price responses are not very different with that of wind. Here, we do not report the

effect of the move from Regime II to III as the other renewables were also affected by it. The treatment

effect is also positive, but smaller than that on column (3). See Appendix B, Table 8.

30



Figure 2: Arbitrage Trends by the Fringe (Wind, Non-Wind Renewables, and Suppliers)

(a) Non-Wind Renewables

(b) Suppliers

Notes: This figure plots the coefficients of the OLS regression in equation (10) for (a) wind vs. other

non-wind renewable producers and (b) wind vs. suppliers. It captures the response of overselling to the

predicted price differential. Positive numbers suggest that overselling was increasing in the predicted

price differential. A zero coefficient shows no attempt to arbitrage. The parallel trends are shown by

the shaded areas: during Regime II for (a), and during Regimes I and III for (b). The sample includes

hours from 1 January 2012 to 31 March 2015 to ensure a similar number of observations in each quarter.

Hours when the predicted price differential is poorly predicted are excluded.
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Table 3: Impacts of Changing the Pricing Schemes on Overselling by Wind

Non-wind renewables Suppliers

(1) (2) (3)

∆p̂× Wind × Regime II -0.071*** -0.069***

(0.0068) (0.014)

∆p̂× Wind × Regime III 0.059***

(0.011)

Observations 41,080 41,080 34,194

Notes: This table shows the β1 coefficients from equation (9). Each column is a different regression using

the log of overselling as the dependent variable. Non-wind renewables is the control group in column

(1), and suppliers is the control group in columns (2)-(3). Columns (1) and (2) use sample d = 1 from 1

February 2012 to 1 February 2014, with the Regime II indicator equal to one for days after 1 February

2013, while column (3) uses the sample from 1 February 2013 to 31 January 2015, with the Regime III

equal to one for days after 22 June 2014. All regressions include seasonality controls, hour of day, and

week fixed effects. Note that, under Regime III, non-wind renewables are also affected by the regulation.

Hence, we prefer not to use it as a control group in our analysis during Regime III. The standard errors

are clustered at the week of sample.

effects, we next provide further evidence showing that the resulting price differences

across markets responded to changes in the renewables market structure, as predicted by

the model.

4.3 Price Differences across Markets

Empirical Approach. Our model predicts that price differences across markets re-

spond differently to changes in the wind production market shares depending on whether

wind producers are paid at fixed prices or exposed to market prices. To test for this, we

use 2SLS and estimate the following empirical equation for our second stage:

∆pt =α +
2∑

s=1

βs
1It + β2

wdt

Wt

+
2∑

s=1

βs
3It
wdt

Wt

+ α1
ˆDR′1t + α2

ˆDR′2t + γXt + εt (11)

where ∆pt is the price premium at time t; It takes two values (1 for Regime I, 2 for

Regime III, and therefore 0 for Regime II serves as the reference point); the wind share

wdt/Wt captures the wind share of the strategic firms as it is computed as the ratio

between the strategic firms’ wind output over total wind output; ˆDR′1t and ˆDR′2t capture

the (instrumented) slopes of the residual demands faced by the strategic firms in the
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day-ahead and intraday markets, respectively, from our first stage regression. We follow

a approach similar as in Section 4.1 as the slopes of the residual demands are potentially

endogenous. Therefore, we instrument these two slopes (DR′1 and DR′2) with daily

and hourly weather variables (daily average, minimum, and maximum temperature, and

average temperature interacted with hourly dummies).49 Xt is a set of controls, such as

demand forecasts,50 wind forecasts, and dummy variables (i.e., hourly dummies, peak-

hour dummy, weekend dummy); last, εt is the error term. We use bootstrap standard

errors with 200 replications.

The coefficient β1 compares price differences across pricing schemes. Coefficients β2

and β3 capture the impacts of changes in the wind shares on the price difference. Our

theoretical model predicts that an increase in the strategic firms’ wind share should reduce

the price differential when renewables are subject to fixed prices, but it should increase

the price differential when exposed to market prices. Regarding the other coefficients, we

expect that all the variables that enhance market power—a higher demand and a steeper

(flatter) demand at day-ahead (spot)—also enlarge the price differences across markets.

Results. Table 4 reports our main coefficients of interest: β2, β
1
3 , and β2

3 from equation

(11). The remaining coefficients are all broadly consistent with our theoretical predic-

tions.51 We can see that the price difference is smaller when the wind share of the

strategic firms increases (see coefficients of wdt

Wt
in all columns). Also, price differences

are higher under the regimes with market prices relative to the fixed prices regime when

the wind share of the strategic firms increases, as reflected by the positive coefficients of

Regime I × wdt

Wt
and Regime III × wdt

Wt
in all columns. This evidence is consistent with the

predictions of the model, giving further support to the relevance of the forward contract

effect under fixed prices (which is strengthened as wd increases) and the arbitrage effect

under market prices (which is weakened as wd increases).

49We compute the aggregate hourly residual demand faced by the strategic firms in the day ahead

and in the intraday markets and their slopes using the same approach as discussed in footnote 40.
50The demand forecast is predetermined before the day-ahead market opens. It is therefore exogenous.
51See the complete list of coefficients is in Appendix B, Table 9. The sign of the other coefficients, such

as those on total demand and the slopes of the residual demands in the day-ahead and in the intraday

markets, are respectively positive, negative, and positive, as expected. Results are very similar if we

instead define the market share variable as a ratio between the strategic’s wind and the fringe’s wind

output (wdt/wft).
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Table 4: The Impact of Pricing Schemes on Price Differences across Markets

2SLS

(1) (2) (3) (4)

wdt

Wt
-0.59*** -0.50*** -0.59*** -0.50***

(0.18) (0.17) (0.18) (0.18)

Regime I × wdt

Wt
0.44** 0.46** 0.44** 0.46**

(0.21) (0.19) (0.21) (0.21)

Regime III × wdt

Wt
0.46** 0.41** 0.46*** 0.41**

(0.18) (0.17) (0.16) (0.17)

Weekend FE N N Y Y

Peak Hour FE N Y N Y

Observations 25,334 25,334 25,334 25,334

Notes: This table shows only our coefficients of interest: β2 and β3 from equation (11). The complete

list of coefficients is in Appendix B, Table 9. R I is an indicator for Regime I periods, R III for Regime

III periods, and Regime II periods are the reference periods. We use bootstrap standard errors with 200

replications.

4.4 Market Power in the Day-Ahead Market

Our results in section 4.1 showed that, given the observed residual demands, firms had

weaker incentives to increase day-ahead prices when their renewable output was shielded

from fluctuations in market prices. However, this alone does not allow us to conclude

that reducing firms’ price exposure mitigated market power in the day-ahead market,

thus benefiting consumers. As our previous results also indicate, the pricing schemes

might have also affected firms’ residual demands through the impacts on arbitrage across

markets. Therefore, taking into account the changes in the residual demands, in this

section we compute and compare firms’ markups across pricing regimes to evaluate the

overall impact of the pricing schemes on market power in the day-ahead market.

Using the first-order condition of profit-maximization—represented by equations (7)

in the theory analysis and (8) in the empirical analysis—markups in the day-ahead market

can be expressed as
p1t − p̂2t
p1t

=

∣∣∣∣∂DRi1t

∂p1t

∣∣∣∣−1 qi1t − Itwi1

p1t

where, leveraging on the structural estimates obtained in Section 4.1, we set It = 1 under

Regime II (fixed prices) and It = 0 under Regimes I and III (market prices).
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Results. The first and third rows of Table 5 report firms’ average markups in the day-

ahead market (using either the simple average or the demand-weighted average). Figure

3 shows their distribution. Markups are always relatively lower under fixed prices : the

average markup during Regime II was 6.3%, while it was 8.3% and 10.7% under Regimes

I and III regimes, respectively. A two-sample Kolmogorov–Smirnov test rejects at 1%

significance level the hypothesis that the markup distributions are the same across pricing

regimes. A similar conclusion applies when comparing the markups of each strategic

firm individually, for off-peak versus on-peak hours, or for more windy or less windy

hours.52 This evidence on the markups comparison is also consistent with the slopes

of the residual demands being relatively larger under fixed prices, thus indicating that

the weaker incentives to exercise market power induced firms to submit flatter supply

functions (see the last row of Table 5). This effect seems to have played a stronger role

than the absence of significant arbitrage.

Table 5: Average markups across pricing regimes

Regime I Regime II Regime III

Mean SD Mean SD Mean SD

Markups (in %) – Simple average

Day-Ahead (structural) 8.3 (3.3) 6.3 (3.3) 10.7 (3.7)

Overall (engineering) 8.6 (23.1) 8.1 (29.4) 29.7 (14.0)

Markups (in %) – Demand weighted average

Day-Ahead (structural) 8.3 (3.2) 6.4 (3.3) 10.7 (3.6)

Overall (engineering) 10.0 (22.8) 9.2 (29.6) 30.4 (13.5)

Slope of day-ahead residual

demand (in MWh/euros)

524.2 (78.2) 553.6 (120.7) 418.2 (73.0)

Notes: It reports the mean and standard deviation of markups and slopes of the day-ahead residual

demand using the sample from February 2012 to February 2015. Regime I (market prices) is from 1

February 2012 to 31 January 2013; Regime II (fixed prices) is from 1 February 2013 to June 13 2014;

Regime III (market prices) is from June 14 2014 to January 2015, for three strategic firms. It only

includes marginal bids around 5 Euro/MWh range and bids with prices above 25 Euro/MWh.

These results are a lower bound on the degree of market power actually exercised

by firms, given that the expected spot market price (which we have used as the shadow

cost of day-ahead sales) might also include a markup over the firm’s marginal costs.

To compute firms’ markups over their actual marginal costs, we rely on engineering

52See Figures 6 and 7 in Appendix B.
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Figure 3: Distribution of day-ahead markups

Notes: This figure plots the distributions of day-ahead markups for all firms by pricing regimes, for

hours with prices above 25 Euro/MWh. Plots by firms (Figure 6) in Appendix B show a very similar

pattern. To absorb some seasonal variation in the markups, Figure 7 by wind quartiles in Appendix B

suggests that markups are indeed lower during Regime II.

estimates for marginal costs. This approach, which is common in the literature,53 leads

to noisier markups due to potential measurement errors in the marginal cost estimates.54

Nonetheless, as shown in Table 5, the results are consistent with our main result; namely,

market power as measured by the price-cost markups was weaker when renewables were

paid according to fixed prices. Also note that the price-cost markups are larger on average

than the markups in the day-ahead market, given that the expected spot market price

includes a markup over marginal costs.

53For example, see Borenstein, Bushnell and Wolak (2002), Fabra and Toro (2005), or Fabra and

Reguant (2014), among others.
54For instance, we see some negative markups which could be explained by firms buying coal and gas

through long-term bilateral contracts at prices below the spot market price, which we use to compute

our marginal cost estimates.
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5 Conclusions

In this paper, we have analyzed how the degree of price exposure faced by renewable ener-

gies impacts market power in electricity markets, taking into account two countervailing

incentives. On the one hand, in line with Allaz and Vila (1993), reducing renewables

price exposure mitigates firms’ incentives to increase prices (forward contract effect). On

the other hand, if renewables are insulated from price changes, firms face weaker incen-

tives to arbitrage price differences, which enhances the strategic producers’ market power

(arbitrage effect).

This trade-off is particularly relevant for a key policy debate in electricity markets;

namely, how to pay for renewables. Since compliance with environmental targets re-

quires massive investments in renewables, it is paramount to understand how alternative

renewable pricing schemes impact market prices and efficiency. One of the key messages

of the paper is that understanding the impact of renewable policy requires an analysis

of the interaction between conventional and renewable generation technologies, and not

just of renewables alone. The interplay between the two very much depends on the de-

gree of firms’ diversification (i.e., whether they own both conventional and renewable

technologies, or not), as this drives much of the outcomes and efficiency results of the

paper.

We have used the Spanish electricity market as a laboratory to explore the trade-off

between the forward contract and the arbitrage effects. Our empirical analysis confirms

that the strategic producers attempted to exercise market power by withholding output

in the day-ahead market. When exposed to market prices, independent wind producers

made the withholding strategy more costly by overselling their idle capacity in the day-

ahead market in order to arbitrage price differences across markets. Instead, paying

renewables according to fixed prices reduced arbitrage, but also mitigated the dominant

producers’ incentives to withhold output in the first place. The latter effect dominated,

giving rise to relatively lower markups in the day-ahead market when renewables were not

exposed to market prices. This was particularly important for consumers, as it allowed

them to pay lower electricity prices.

There are reasons to expect that market power concerns in electricity markets will

diminish over time (as demand response and storage facilities become more widespread).

However, there are also compelling reasons to remain vigilant, as the expansion of renew-

able energies will make it increasingly important to understand how renewables pricing
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schemes affect market performance.55 The long-run impacts of such differences on in-

vestment decisions are left for future research.
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Appendix

Appendix A: Additional Results and Proofs

A.1 Proofs

In this section we provide closed-form solutions for the equilibrium prices of the model

described in Section 2. All proofs for the lemmas and propositions in the main text follow

from these expressions.

No Arbitrage We first solve the profit maximization problems in (3) for the spot

market, and (5) under market prices and (6) under fixed prices for the day-ahead market.

We do so by backward induction, with D1(p1) = A−bp1−(1− δ)w and D2(p1, p2) = b∆p.

For given p1, the spot market solution is given by, under both pricing rules,

p2 =
p1 + c

2
, implying q2 = b

p1 − c
2
· (12)

To solve the day-ahead market problem, we first consider market prices and then fixed

prices.

Under market prices , plugging (12) into the day-ahead problem (5), one can find

the day-ahead market solution

pM1 = [2 (A− (1− δ)w) + bc] /3b

implying

qM1 = (A− (1− δ)w − bc) /3.

Plugging this back into the spot market solution gives

pM2 = [A− (1− δ)w + 2bc] /3b

implying

qM2 = (A− (1− δ)w − bc) /3.

Taking the difference between the two prices,

∆pM ≡ pM1 − pM2 = (A− (1− δ)w − bc) /3b.

Since we have assumed A − w − bc > 0, it follows that qM1 > 0, and pM1 > pM2 >

δw/3b+ c > c. Note that the solution is the same as Ito and Reguant (2016)’s Result 1,

with A− (1− δ)w here in the place of A there.
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Under fixed prices, plugging (12) into the day-ahead problem (6), one can find the

day-ahead market solution,

pF1 = [2 (A− w) + bc] /3b (13)

= pM1 − 2δw/3b

implying

qF1 =
(A+ w (3δ − 1)− bc)

3
= qM1 + 2δw/3.

Plugging this back into the spot market solution gives

pF2 = [A− w + 2bc] /3b (14)

= pM2 − δw/3b

implying

qF2 = (A− w − bc) /3

= qM2 − δw/3.

Taking the difference between the two prices,

∆pF = (A− w − bc) /3b (15)

= ∆pM − δw/3b > 0.

Last, using the above expressions, we obtain

qF2 = (A− w − bc) /3

= qM2 − δw/3 > 0.

The comparative statics of prices with respect to w and δ are:

∂pF1
∂w

= −2/3b < 0 and
∂pF1
∂δ

= 0

∂pF2
∂w

= −1/3b < 0 and
∂pF2
∂δ

= 0

∂∆pF

∂w
= −1/3b < 0 and

∂∆pF

∂δ
= 0

∂pF1
∂w∂δ

=
∂pF2
∂w∂δ

=
∂∆pF

∂w∂δ
= 0.
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Unlimited Arbitrage We now solve the profit maximization problem under market

prices with unlimited arbitrage s adjusted so that the two prices converge. We again

proceed by backward induction. For given p1, the spot market solution is given by, under

both pricing rules,

p2 =
p1 + c

2
+

s

2b
, implying q2 = b

p1 − c
2

+
s

2
· (16)

Plugging (16) into the day-ahead problem (5), one can find the day-ahead market solution

pM1 = [2 (A− (1− δ)w) + bc− s] /3b (17)

implying

qM1 = (A− (1− δ)w − bc− 2s) /3.

Plugging this back into the spot market solution gives

pM2 = [A− (1− δ)w + 2bc+ s] /3b (18)

implying

qM2 = (A− (1− δ)w − bc+ s) /3.

Taking the difference between the two prices,

∆pM ≡ pM1 − pM2 = (A− (1− δ)w − bc− 2s) /3b.

Setting pM1 = pM2 , we find

sM = (A− (1− δ)w − bc) /2.

Plugging this back into the price expressions,

pM1 = pM2 = [A− (1− δ)w + bc] /2b.

Limited Arbitrage If arbitrage is limited, the degree of arbitrage needed to achieve

full price convergence exceeds the fringe’s idle capacity, sM > (1− δ) (k − w). The

solution under limited arbitrage is found by simply plugging s = (1− δ) (k − w) into

equations (17) and (18) above. This gives rise to the following equilibrium prices

pM1 = [2A− (1− δ) (k + w) + bc] /3b (19)

pM2 = [A+ (1− δ) (k − 2w) + 2bc] /3b (20)

∆pM = [A− (1− δ) (2k − w)− bc] /3b. (21)
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The comparative statics of prices with respect to w and δ are:

∂pM1
∂w

= − (1− δ) /3b ≤ 0 and
∂pM1
∂δ

= (k + w) /3b > 0

∂pM2
∂w

= −2 (1− δ) /3b ≤ 0 and
∂pM2
∂δ

= − (k − 2w) /3b

∂∆pM

∂w
= (1− δ) /3b ≥ 0 and

∂∆pM

∂δ
= (2k − w) /3b > 0

∂pM1
∂w∂δ

=
1

2

∂pM2
∂w∂δ

= 1/3b > 0.

We can now compare the equilibrium outcomes under limited arbitrage across pricing

rules under the assumption that the arbitrage constraint is binding.

Comparing the expressions for p1, (13) and (19):

pM1 − pF1 = [− (1− δ) (k − w) + 2δw] /3b.

Hence, pM1 > pF1 if and only if δw > (1− δ) (k − w) /2. Solving for δ,

δ > δ̂ ≡ k − w
k + w

∈ [0, 1] .

Comparing the expressions for p2, (14) and (20):

pM2 − pF2 = [(1− δ) (k − w) + δw] /3b > 0.

A.2 Extensions: Cournot Competition

In the main text we have assumed that there is a single dominant firm. We now analyze

the case with n > 1 strategic firms competing à la Cournot. Our solution in the main

text can be recovered by setting n = 1.

We use qit to denote firm i’s production in market t, q−it =
∑n

j 6=i qjt to denote its

rivals’ production in market t, and qt = qit + q−it to denote total production in market

t, for i = 1, ..., n and t = 1, 2. Each strategic firm owns a fraction δ/n of the renewable

capacity, where δ ∈ [0, 1]. They can all produce conventional output at constant marginal

costs c.

We first solve the baseline case (denoted by B) with market prices and no arbitrage,

and then solve the games with market prices and limited arbitrage, and the game with

fixed prices.

Baseline. The problem of the strategic firms i = 1, ..., n is solved by backwards induc-

tion. In the spot market, firm i chooses qi2 so as to maximize its profits, taking as given
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the quantities chosen by its rivals in the spot market as well as the day-ahead quantities.

We can express the spot market problem as in (3), but we now express it as a function

of firms’ quantities,

max
qi2

[p2 (q1, q2) qi2 − c (qi1 + qi2 − δw/n)] , (22)

where, using (2), spot market demand can be expressed as p2 (q1, q2) = p1 (q1)− q2/b.
Solving the FOC, each firm’s reaction function in the spot market is

qi2 (q−i2) = b
p1 − c

2
− 1

2
q−i2·

In a symmetric equilibrium,

q∗i2 (q1) =
b

n+ 1
(p1 (q1)− c) and p∗2 (q1) =

p1 (q1) + cn

n+ 1
· (23)

The day-ahead market problem becomes

max
p1

[
p1 (q1) q1 + p∗2 (q1) q

∗
2 (q1)− c (qi1 + qi2 − δw/n) + pδw/n

]
(24)

where, using (1), the day-ahead demand can be expressed as

p1 (q1) = (A− w (1− δ)− q1) /b. (25)

Solving the FOC, each firm’s reaction function in the day-ahead market is

qi1 (q−i1) =
(n2 + 2n− 1)

2n (n+ 2)
[A− w (1− δ)− bc− q−i1] .

In a subgame-perfect symmetric equilibrium under the baseline case,

qBi1 = ∆ (n)
(
n2 + 2n− 1

)
(A− w (1− δ)− bc) ,

where to simplify notation, we have used ∆ (n) = (n3 + 3n2 + n+ 1)
−1
> 0.

The equilibrium price pB1 can be found by plugging q1 = nqBi1 into (1). The spot price

pB2 can be found by plugging pB1 into (23). Using the resulting equilibrium expressions,

the price difference across markets is given by

∆pB ≡ pB1 − pB2 = ∆ (n)n (n+ 1) (A− w (1− δ)− bc) /b.
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Market Prices with Limited Arbitrage. The spot market problem is the same as

in (22), but the demand is now given by p2 (q2) = p1 + (k − w) (1− δ) /b− q2/b since the

fringe has incentives to arbitrage (k − w) (1− δ) .
Each firm’s reaction function in the spot market becomes

q2 (q−i2) = b
p1 − c

2
+

(k − w) (1− δ)
2

− 1

2
q−i2·

In a symmetric equilibrium,

q∗i2 (q1) =
b

n+ 1
(p1 (q1)− c) +

(k − w) (1− δ)
n+ 1

p∗2 (q1) =
p1 (q1) + cn

n+ 1
+

1

b

(k − w) (1− δ)
n+ 1

·

The day-ahead market problem is the same as in (24), but demand is now given by

p1 (q1) = (A− k (1− δ)− q1) /b since the fringe offers its full renewable capacity k (1− δ).
After some algebra, the solution is given by

pM1 = pB1 −∆ (n)
(
n2 + 1

)
(1− δ) (k − w) /b (26)

pM2 = pB2 + ∆ (n)n (n+ 1) (1− δ) (k − w) /b (27)

∆pM = ∆pB −∆ (n)
(
2n2 + n+ 1

)
(1− δ) (k − w) /b.

Performing comparative statics with respect to w,

∂pM1
∂w

= −2∆ (n)n (1− δ) /b ≤ 0 (28)

∂pM2
∂w

= −∆ (n) (n+ 1)2 (1− δ) /b ≤ 0 (29)

∂∆pM

∂w
= ∆ (n)

(
n2 + 1

)
(1− δ) /b ≥ 0. (30)

All the inequalities are strict for δ < 1.

Computing the cross-derivatives with respect to δ,

∂pM2
∂w∂δ

≥ ∂pM1
∂w∂δ

> 0 ≥ ∂∆pM

∂w∂δ
·

Fixed Prices. The solution to the spot market problem is the same as in the baseline

model, (22). In the day-ahead market, the problem becomes

max
qi1

[p1 (q1) (qi1 − δw/n) + p2 (p1) q2 (p1)− c (qi1 + qi2 − δw/n) + pδw/n]
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where p1 (q1) = (A− w (1− δ)− q1) /b. Following the same steps as before, the solution

is given by

pF1 = pB1 −∆ (n) (n+ 1)2wδ/b (31)

pF2 = pB2 −∆ (n) (n+ 1)wδ/b (32)

∆pF = ∆pB −∆ (n) (n+ 1)nwδ/b

Performing comparative statics with respect to w,

∂pF1
∂w

= − (n+ 1)2 ∆ (n) /b < 0 (33)

∂pF2
∂w

= − (n+ 1) ∆ (n) /b < 0 (34)

∂∆pF

∂w
= −n (n+ 1) ∆ (n) /b < 0 (35)

All the cross-derivatives with respect to δ equal 0.

Comparison across Pricing Rules. We are now ready to prove the analogous of

Proposition 1 for the case n > 1.

(i) Comparing the expressions for p1, (26) and (31):

pF1 − pM1 = ∆ (n)
[(
n2 + 1

)
(1− δ) (k − w)− (n+ 1)2wδ

]
/b.

Hence, pF1 < pM1 if and only if the term in brackets is positive. Solving for δ,

δ > δ̂ (n) ≡ k − w
k + 2n

n2+1
w
· (36)

Since δ̂ (n) is increasing in n, it follows that

δ̂ (n) ∈
[
k − w
k + w

,
k − w
k

]
.

(ii) Comparing the expressions for p2, (27) and (32):

pF2 − pM2 = −w (n+ 1)

b (k + kn2 + 2nw)
(k − w) < 0.

Similarly, the analogous of Proposition 2 for the case n > 1 follows from the compar-

ative statics reported above.
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Appendix B: Additional Figures and Tables

Figure 4: Overselling and Withholding by Wind Producers

Notes: This figure shows the weekly average of the day-ahead commitments relative to the final com-

mitments of the wind producers, split in three regulatory regimes. Sample is from February 2012 to

February 2015. Regime I - Market Prices is from 1 February 2012 to 31 January 2013; Regime II - Fixed

Prices is from 1 February 2013 to 21 June 2014; Regime III - Market Prices is from 22 June 2014 to 31

January 2015.
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Figure 5: Predicted and Observed Price Premium

Notes: This figure shows locally weighted linear regressions of ∆p̂t (predicted) and ∆pt (observed) from

February 2012 to February 2015. The weights are applied using a tricube weighting function (Cleveland,

1979) with a bandwidth of 0.1. The predictions (∆p̂t) are done using the estimated coefficients obtained

from equation in footnote 44. These ∆p̂t are used in equation (10).
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Figure 6: Markup Distribution by Firm

Notes: This figure plots the markup distributions for each of the strategic firms by their pricing regimes

for hours with prices above 25 Euro/MWh.
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Figure 7: Markup Distribution by Wind Quartiles

Notes: This figure compares markups distribution by wind forecast quartiles (low, medium, and high

wind days) in three different pricing regimes for hours with prices above 25 Euro/MWh.
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Figure 8: Approximating the slopes of the residual demands

Firm 1

Firm 2 Firm 3

Notes: This figure illustrates how we use quadratic approximation to compute the local slope around

the market clearing price (the horizontal line) for each of the dominant firm’s residual demand curve.

Here, we show each firm’s the residual demand curve in October 10, 2014, 18.00.
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Table 6: The Forward Contract Effect with Various Clusterings

2SLS

(1) (2) (3) (4)

RI × wit

DR′
it

6.35 9.31 9.10 5.54

Firm-month-year (8.58) (9.20) (8.70) (7.43)

Firm-week (7.12) (7.20) (6.98) (6.97)

Firm-day (5.35) (5.50) (5.37) (5.58)

RII × wit

DR′
it

-14.2** -14.5** -14.9** -14.3

Firm-month-year (6.43) (6.16) (6.30) (8.68)

Firm-week (7.11) (7.05) (7.17) (8.24)

Firm-day (7.22) (7.15) (7.24) (8.46)

RIII × wit

DR′
it

1.72 0.049 0.60 5.69

Firm-month-year (6.81) (5.87) (5.56) (7.67)

Firm-week (6.71) (5.98) (5.81) (8.50)

Firm-day (4.04) (3.45) (3.32) (6.84)

Linear Trends N Y Y Y

Quad. Trends N N Y Y

Observations 19,805 19,805 19,805 19,805

Notes: See the notes in Table 2 which uses plant level clustering. Here we report three different standard

errors from three alternative clusterings: firm-day, firm-month-year, and firm-week levels.
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Table 7: The Forward Contract Effect Accounting for Vertical Integration

2SLS

(1) (2) (3) (4)

RI × wit

DR′
it

11.9* 12.5* 12.4* 18.5**

(6.45) (6.59) (6.41) (8.79)

RII × wit

DR′
it

-14.1*** -12.7*** -13.1*** -7.48**

(3.47) (2.83) (2.97) (3.48)

RIII × wit

DR′
it

1.09 1.15 1.78 7.57*

(3.91) (3.74) (3.43) (4.18)

p̂2t 0.94*** 0.96*** 0.96*** 1.18***

(0.064) (0.067) (0.067) (0.10)

qit
DR′

it
3.36***

(0.93)

Linear Trends N Y Y Y

Quad. Trends N N Y Y

Observations 19,805 19,805 19,805 19,805

Notes: This table shows the estimation results of equation (8) using 2SLS. All regressions include unit,

firm and quarterly dummies, time trends, while in columns (2)-(4) we add day-of-the-week dummies, hour

fixed effects, and quadratic time trends are added in a cumulative fashion. We constrain the coefficient

for markups from firms’ total output to be one in columns (1) to (3), and we relax this by allowing

the markup coefficient to vary in column (4). We limit hourly prices to be within 5 Euro/MWh range

relative to the market price and exclude the outliers (bids with market prices below the 1st percentile

and above the 99th percentile). We instrument our markups with wind speed, precipitation, and each

of them interacted with the three pricing scheme indicators. The standard errors are clustered at the

plant level.
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Table 8: The Response of Overselling to the Price Premium

Wind Non-wind Retailers Diff

Renewables

(1) (2) (3) (1)-(2) (1)-(3)

R I 0.064 0.008 0.079 -0.076 -0.006

(0.000) (0.000) (0.000) (0.000) (0.529)

R II -0.001 -0.004 0.086 -0.005 0.063

(0.882) (0.004) (0.000) (0.151) (0.000)

R III 0.032 -0.006 0.053 -0.036 0.004

(0.000) (0.000) (0.000) (0.000) (0.503)

R I→R II -0.065 -0.013 0.008 -0.071 -0.069

(0.000) (0.000) (0.334) (0.000) (0.000)

R II→R III 0.026 -0.000 -0.049 0.03 0.059

(0.000) (0.812) (0.000) (0.000) (0.000)

Notes: This table reports the coefficient of ∆p̂t from 25 different regressions similar to equation (10).

Columns (1)-(3) only use overselling quantity from each group on the corresponding column header. The

two columns on the right compare the difference in overselling from either columns (1) and (2) or columns

(1) and (3). The last two rows compare two pricing regimes, either from Regime I to II or from Regime

II to III. The corresponding P-values for each coefficient are in parentheses. Pre-trend assumptions are

supported by the p-values in columns (1)-(2) row 2 – under Regime II, wind and non-wind renewables

face the same incentives to oversell – and columns (1)-(3) row 1 or row 3 – under Regime III, wind, and

suppliers face the same incentives to oversell. The impact on the price response of overselling can be

seen in the last two rows in columns (1)-(2) and (1)-(3), and it is similar to numbers reported in Table

3.
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Table 9: The Impact of Pricing Schemes on Price Differences across Markets

2SLS

(1) (2) (3) (4)

DR’1 -0.014** -0.0080 -0.014** -0.0080

(0.0058) (0.0061) (0.0062) (0.0066)

DR’2 0.091*** 0.089*** 0.091*** 0.089***

(0.024) (0.024) (0.024) (0.025)

Wind Forecast (GWh) 0.060 0.0029 0.060 0.0029

(0.046) (0.050) (0.049) (0.056)

wdt

Wt
-0.59*** -0.50*** -0.59*** -0.50***

(0.18) (0.17) (0.18) (0.18)

R I -0.46*** -0.52*** -0.46*** -0.52***

(0.16) (0.16) (0.15) (0.17)

R II -1.16*** -1.01*** -1.16*** -1.01***

(0.21) (0.22) (0.23) (0.23)

R I × wdt

Wt
0.44** 0.46** 0.44** 0.46**

(0.21) (0.19) (0.21) (0.21)

R II × wdt

Wt
0.46** 0.41** 0.46*** 0.41**

(0.18) (0.17) (0.16) (0.17)

Demand Forecast (GWh) -0.0029 0.079*** -0.0029 0.079***

(0.017) (0.024) (0.019) (0.027)

Weekend FE N N Y Y

Peak Hour FE N Y N Y

Observations 25334 25334 25334 25334

Notes: This table shows the coefficients from equation (11). The slopes of the residual demands DR′1

and DR′2 are instrumented using daily average, minimum, and maximum temperature, and average

temperature interacted with hourly dummies. Regime I is an indicator for Regime I periods, R IIIt for

Regime III periods, with Regime II periods used as the reference point. We use bootstrap standard

errors with 200 replications.
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Table 10: Average Markups in the Day-ahead Market

R I R II R III

Mean SD Mean SD Mean SD

Markups (in %) – Simple average

All 8.3 (3.3) 6.3 (3.3) 10.7 (3.7)

Firm 1 7.0 (2.2) 7.0 (2.6) 12.1 (4.4)

Firm 2 12.3 (4.1) 8.2 (5.1) 14.7 (4.4)

Firm 3 7.7 (2.3) 6.0 (3.3) 10.3 (3.3)

Slope of day-ahead residual demand (in MWh/euros)

All 524.2 (78.2) 553.6 (120.7) 418.2 (73.0)

Firm 1 506.6 (50.5) 458.4 (72.7) 411.0 (62.4)

Firm 2 508.5 (71.8) 556.4 (165.0) 453.8 (99.8)

Firm 3 538.2 (88.7) 573.3 (117.2) 418.0 (73.2)

Notes: Sample from February 2012 to January 2015, includes the markups for those units bidding within

a 5 Euro/MWh range around the market price, for hours with prices above 25 Euro/MWh. Regime I is

from 1 February 2012 to 31 January 2013; Regime II is from 1 February 2013 to 21 June 2014; Regime

III is from 22 June 2014 to 31 January 2015.
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