Market Power and Price Discrimination: Learning from Changes in Renewables Regulation

Natalia Fabra and Imelda Universidad Carlos III de Madrid

University of Cambridge Virtual Seminar, October 2020

Market power and price discrimination

Similar goods are often sold at different prices:

Price discrimination across locations, time, customer groups

Similar goods are often sold at different prices:

Price discrimination across locations, time, customer groups

■ Lowering price discrimination need not be welfare-enhancing ■ High price \downarrow + low price \uparrow → Welfare?

...but it often makes consumers better-off.

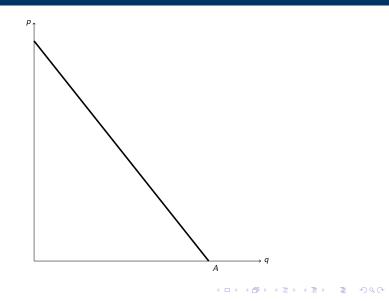
- Similar goods are often sold at different prices:
 - Price discrimination across locations, time, customer groups
- Lowering price discrimination need not be welfare-enhancing
 High price ↓ + low price ↑ → Welfare?
- ...but it often makes consumers better-off.
- Increasing concerns about the distributional implications:
 Non-discrimination clauses, promotion of arbitrage

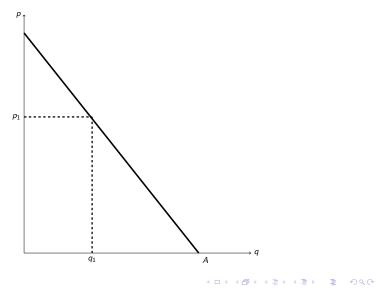
- Similar goods are often sold at different prices:
 - Price discrimination across locations, time, customer groups
- Lowering price discrimination need not be welfare-enhancing
 High price ↓ + low price ↑ → Welfare?
- ...but it often makes consumers better-off.
- Increasing concerns about the distributional implications:
 - Non-discrimination clauses, promotion of arbitrage
 - Hviid and Waddams (2012): Non-discrimination clauses in the Retail Energy Sector

This paper: Instead of promoting arbitrage, are there other policies that reduce price discrimination to the benefit of consumers while also enhancing welfare? **This paper:** Instead of promoting arbitrage, are there other policies that reduce price discrimination to the benefit of consumers while also enhancing welfare?

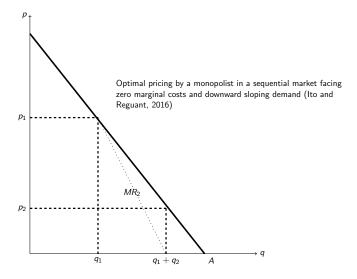
Our answer in a nutshell:

- If price differences across markets stem from market power...
- addressing market power directly reduces price discrimination
- and it is more efficient than promoting arbitrage.

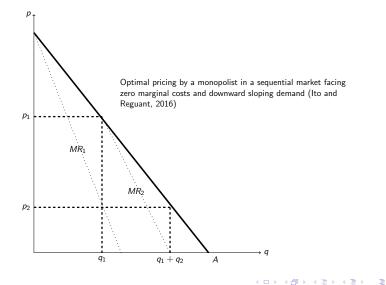

This paper: Instead of promoting arbitrage, are there other policies that reduce price discrimination to the benefit of consumers while also enhancing welfare?


Our answer in a nutshell:

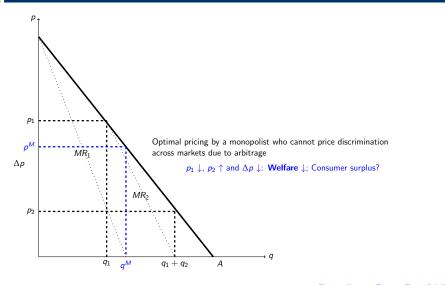
- If price differences across markets stem from market power...
- addressing market power directly reduces price discrimination
- and it is more efficient than promoting arbitrage.


Our focus:

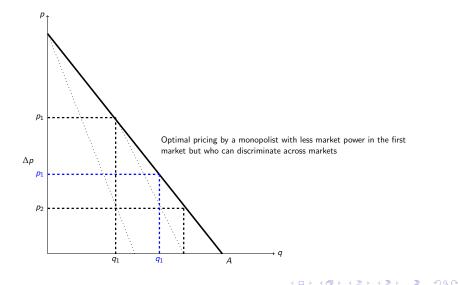
- Sequential markets
- Forward contracts as a tool to reduce market power



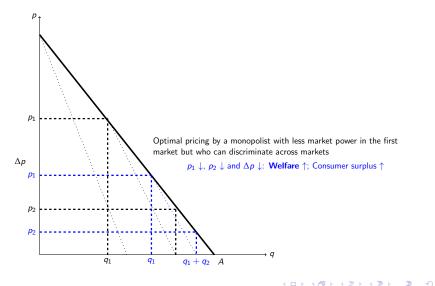
4 / 49



◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < ⊙


5/49

Sequential markets with full arbitrage



4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 6 / 49)

Sequential markets with market power mitigation

Sequential markets with market power mitigation

7/49

Electricity markets: a motivating example

- **1** Electricity markets are organized **sequentially**:
 - Day-ahead market followed by close to real-time markets.

イロン イロン イヨン イヨン 三日

8/49

- 2 Forward-premia consistent with market power.
- Arbitrage across markets allowed, but often with limits:
 - Transactions must be backed by physical assets.
- 4 Various forms of forward contracting, including:
 - Renewables pricing policy

How should we pay for renewables' output?

Fixed prices: Feed-in-Tariffs (FiT)

- Prices set ex-ante by regulators or through auctions
- Act like forward contracts: mitigate market power
- Discourage renewables from arbitraging
- **2** Variable prices: Feed-in-Premia (FiP)
 - Prices in wholesale energy markets + fixed premium
 - No direct effect on market power
 - Promote arbitrage across markets

Fixed prices: Feed-in-Tariffs (FiT)

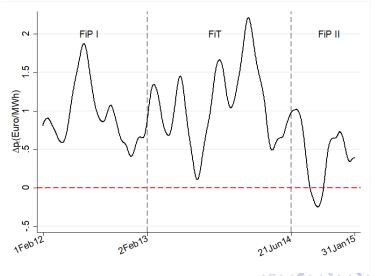
- Prices set ex-ante by regulators or through auctions
- Act like forward contracts: mitigate market power
- Discourage renewables from arbitraging
- **2** Variable prices: Feed-in-Premia (FiP)
 - Prices in wholesale energy markets + fixed premium
 - No direct effect on market power
 - Promote arbitrage across markets

This paper:

For given capacities, what are the overall market impacts of paying renewables according to fixed or variable prices?

Iberian electricity market: an ideal laboratory

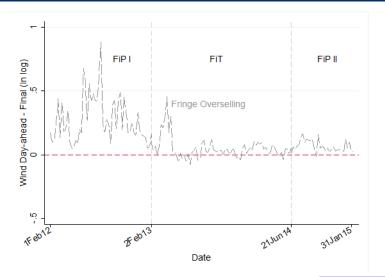
1 Changes in wind regulation:


- 02/2013: variable prices \rightarrow fixed prices
- 04/2014: fixed prices \rightarrow variable prices (+other changes)
- No changes in market structure during this period

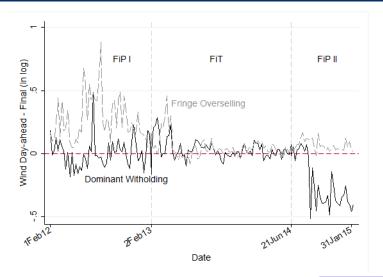
It is possible to provide a **causal interpretation** of the impact of pricing rules on bidding behaviour and market outcomes

2 High wind penetration (covering 20-23% of demand)

The effects are quantitatively meaningful


A first look at the data: price discrimination

Price differences between day-ahead and the first intra-day market


11 / 49

A first look at the data: pricing rules matter

Overselling and withholding across markets by wind producers . Overselling by hour

A first look at the data: pricing rules matter

Overselling and withholding across markets by wind producers Overselling by hour on

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Model Description

Markets and Demand:

- Sequential markets: day-ahead and spot markets, t = 1, 2
- Total demand D(p)
- Consumers are myopic

Model Description

Markets and Demand:

Sequential markets: day-ahead and spot markets, t = 1, 2

イロト 不得下 イヨト イヨト 二日

15/49

- Total demand D(p)
- Consumers are myopic

Technologies:

- Conventional: marginal costs c
- Wind: zero marginal costs; availability $w_i \leq k_i$

Model Description

Markets and Demand:

- Sequential markets: day-ahead and spot markets, t = 1, 2
- Total demand D(p)
- Consumers are myopic

Technologies:

- Conventional: marginal costs c
- Wind: zero marginal costs; availability $w_i \leq k_i$

Firms and ownership:

- Fringe firms (f) own wind [price-takers]
- Dominant firm (d) owns **both technologies** [profit max]

- Wind producers receive variable prices: market price + p
 Arbitrage not allowed
- Residual demands faced by dominant firm:

$$\begin{array}{rcl} q_1(p_1) &=& D(p_1) - w_f \\ q_2(p_1, p_2) &=& D(p_2) - D(p_1) \end{array}$$

- Wind producers receive variable prices: market price + p
 Arbitrage not allowed
- Residual demands faced by dominant firm:

$$\begin{array}{rcl} q_1(p_1) & = & D(p_1) - w_f \\ q_2(p_1, p_2) & = & D(p_2) - D(p_1) \end{array}$$

Spot market and day-ahead problems:

$$\max_{p_2} \left[p_2 q_2 - c \left(q_1 + q_2 - w_d \right) \right]$$

イロト 不得 とくき とくきとう き

16/49

- Wind producers receive variable prices: market price + p
 Arbitrage not allowed
- Residual demands faced by dominant firm:

$$q_1(p_1) = D(p_1) - w_f$$

$$q_2(p_1, p_2) = D(p_2) - D(p_1)$$

Spot market and day-ahead problems:

$$\max_{p_2} \left[p_2 q_2 - c \left(q_1 + q_2 - w_d \right) \right]$$

$$\max_{p_1} \left[p_1 q_1 + p_2^* q_2^* - c \left(q_1 + q_2^* - w_d \right) + w_d \underline{p} \right]$$

- Wind producers receive variable prices: market price + p
 Arbitrage not allowed
- Residual demands faced by dominant firm:

$$q_1(p_1) = D(p_1) - w_f$$

$$q_2(p_1, p_2) = D(p_2) - D(p_1)$$

Spot market and day-ahead problems:

$$\max_{p_2} \left[p_2 q_2 - c \left(q_1 + q_2 - w_d \right) \right]$$

$$\max_{p_1} \left[p_1 q_1 + p_2^* q_2^* - c \left(q_1 + q_2^* - w_d \right) + w_d \underline{p} \right]$$

In equilibrium: 📭 💿

• Market prices: $p_1^B > p_2^B > c$

- Wind producers receive variable prices: market price + p
 Limited arbitrage: offers must be backed by physical assets
- Residual demands faced by dominant firm:

$$q_1(p_1) = D(p_1) - w_f - (k_f - w_f)$$

$$q_2(p_1, p_2) = D(p_2) - D(p_1) + (k_f - w_f)$$

- Wind producers receive variable prices: market price + p
 Limited arbitrage: offers must be backed by physical assets
- Residual demands faced by dominant firm:

$$q_1(p_1) = D(p_1) - w_f - (k_f - w_f)$$

$$q_2(p_1, p_2) = D(p_2) - D(p_1) + (k_f - w_f)$$

Spot and day-ahead market problems remain as in baselineThe change in demand/supply pushes prices together

- Wind producers receive variable prices: market price + p
 Limited arbitrage: offers must be backed by physical assets
- Residual demands faced by dominant firm:

$$q_1(p_1) = D(p_1) - w_f - (k_f - w_f)$$

$$q_2(p_1, p_2) = D(p_2) - D(p_1) + (k_f - w_f)$$

Spot and day-ahead market problems remain as in baselineThe change in demand/supply pushes prices together

In equilibrium: [arbitrage effect] • 60

• Market prices: $p_1^B > p_1^V \ge p_2^V > p_2^B > c$

- Wind producers receive variable prices: market price + p
 Limited arbitrage: offers must be backed by physical assets
- Residual demands faced by dominant firm:

$$q_1(p_1) = D(p_1) - w_f - (k_f - w_f)$$

$$q_2(p_1, p_2) = D(p_2) - D(p_1) + (k_f - w_f)$$

Spot and day-ahead market problems remain as in baselineThe change in demand/supply pushes prices together

In equilibrium: [arbitrage effect] • Go

- Market prices: $p_1^B > p_1^V \ge p_2^V > p_2^B > c$
- Price discrimination: $\Delta p^V < \Delta p^B$ and it is increasing in w_f

Fixed prices + limited arbitrage (F)

- **1** Wind producers receive fixed prices \overline{p}
- 2 Limited arbitrage allowed, but no incentives to do so

Fixed prices + limited arbitrage (F)

- **1** Wind producers receive **fixed prices** \overline{p}
- 2 Limited arbitrage allowed, but no incentives to do so
 - Residual demands remain as in baseline
- Spot market problem remains as in baseline

- **1** Wind producers receive **fixed prices** \overline{p}
- 2 Limited arbitrage allowed, but no incentives to do so
 - Residual demands remain as in baseline
- Spot market problem remains as in baseline
- Day-ahead market problem now becomes:

$$\max_{p_1} \left[p_1(q_1 - w_d) + p_2^B q_2^B - c \left(q_1 + q_2^B - w_d \right) + w_d \overline{p} \right]$$

- **1** Wind producers receive **fixed prices** \overline{p}
- 2 Limited arbitrage allowed, but no incentives to do so
- Residual demands remain as in baseline
- Spot market problem remains as in baseline
- Day-ahead market problem now becomes:

$$\max_{p_1} \left[p_1(q_1 - w_d) + p_2^B q_2^B - c \left(q_1 + q_2^B - w_d \right) + w_d \overline{p} \right]$$

$$D(p_1) - w_f - w_d + \left(p_1 - p_2^B\right) \frac{\partial D(p_1)}{\partial p_1} = 0$$

イロト イポト イヨト イヨト

- **1** Wind producers receive **fixed prices** \overline{p}
- 2 Limited arbitrage allowed, but no incentives to do so
- Residual demands remain as in baseline
- Spot market problem remains as in baseline
- Day-ahead market problem now becomes:

$$\max_{p_1} \left[p_1(q_1 - w_d) + p_2^B q_2^B - c \left(q_1 + q_2^B - w_d \right) + w_d \overline{p} \right]$$

$$D(p_1) - w_f - w_d + \left(p_1 - p_2^B\right) \frac{\partial D(p_1)}{\partial p_1} = 0$$

In equilibrium: [forward-contract effect]

• Market prices: $p_1^B > p_1^F$ and $p_2^B > p_2^F > c$

- **1** Wind producers receive **fixed prices** \overline{p}
- 2 Limited arbitrage allowed, but no incentives to do so
- Residual demands remain as in baseline
- Spot market problem remains as in baseline
- Day-ahead market problem now becomes:

$$\max_{p_1} \left[p_1(q_1 - w_d) + p_2^B q_2^B - c \left(q_1 + q_2^B - w_d \right) + w_d \overline{p} \right]$$

$$D(p_1) - w_f - w_d + \left(p_1 - p_2^B\right) \frac{\partial D(p_1)}{\partial p_1} = 0$$

In equilibrium: [forward-contract effect]

- Market prices: $p_1^B > p_1^F$ and $p_2^B > p_2^F > c$
- Price discrimination: $\Delta p^F < \Delta p^B$ and it is decreasing in w_d

Comparison across pricing rules

Comparing spot market prices:

- $p_2^V > p_2^B > p_2^F$
- Higher efficiency under fixed prices

Comparison across pricing rules

Comparing spot market prices:

- $p_2^V > p_2^B > p_2^F$
- Higher efficiency under fixed prices

Comparing day-ahead prices:

Comparison depends on market structure

[Arbitrage vs. forward-contract effects]

$$V: D(p_1) - w_f - (k_f - w_f) + \left(p_1 - p_2^V\right) \frac{\partial D(p_1)}{\partial p_1} = 0$$

$$F: D(p_1) - w_f - w_d + \left(p_1 - p_2^B\right) \frac{\partial D(p_1)}{\partial p_1} = 0$$

Comparison across pricing rules

Comparing spot market prices:

- $p_2^V > p_2^B > p_2^F$
- Higher efficiency under fixed prices

Comparing day-ahead prices:

Comparison depends on market structure

[Arbitrage vs. forward-contract effects]

$$V: D(p_1) - w_f - (k_f - w_f) + \left(p_1 - p_2^V\right) \frac{\partial D(p_1)}{\partial p_1} = 0$$

$$F: D(p_1) - w_f - w_d + \left(p_1 - p_2^B\right) \frac{\partial D(p_1)}{\partial p_1} = 0$$

Comparing price discrimination:

Comparison depends on market structure

Testable predictions

1 Evidence of the forward-contract effect day-ahead?

For given demand, more competitive bidding under fixed prices

Testable predictions

I Evidence of the forward-contract effect day-ahead?

For given demand, more competitive bidding under fixed prices

2 Evidence of the arbitrage effect across markets?

Wind firms arbitrage under variable prices, not under fixed

Testable predictions

I Evidence of the forward-contract effect day-ahead?

For given demand, more competitive bidding under fixed prices

2 Evidence of the arbitrage effect across markets?

Wind firms arbitrage under variable prices, not under fixed

8 Price discrimination across markets?

- Comparison btw pricing rules depends on market structure
- Comparative statics wrt wind should move in opposite directions btw pricing rules

4 Market power in the day-ahead market?

Comparison btw pricing rules depends on market structure

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Iberian electricity market

Market design and market structure:

- Day-ahead market + intra-day markets + balancing markets
- Mix of dominant and fringe firms
- Mix of vertically integrated and stand-alone firms
- Mix of various technologies

The Iberian electricity market

Market design and market structure:

- Day-ahead market + intra-day markets + balancing markets
- Mix of dominant and fringe firms
- Mix of vertically integrated and stand-alone firms
- Mix of various technologies
- Rich data: Summary Statistics
 - Sample: 2012-2015
 - Detailed bid data at the plant level, including data on:
 - net positions of vertically integrated companies
 - bilateral contracts
 - Hourly data on equilibrium outcomes
 - Detailed data on marginal costs at plant level

Dominant firms do not internalize price increases on wind output under fixed prices – forward-contract effect

Dominant firms do not internalize price increases on wind output under fixed prices – forward-contract effect

Profit maximization in day-ahead market:

$$p_1 = p_2 + \left| \frac{\partial DR_{i1}}{\partial p_1} \right|^{-1} (q_{i1} - I_t w_{i1})$$

where $I_t = 1$ with fixed prices and $I_t = 0$ with variable prices.

 Dominant firms do not internalize price increases on wind output under fixed prices – forward-contract effect

Profit maximization in day-ahead market:

$$p_1 = p_2 + \left| \frac{\partial DR_{i1}}{\partial p_1} \right|^{-1} (q_{i1} - I_t w_{i1})$$

where $I_t = 1$ with fixed prices and $I_t = 0$ with variable prices.

Empirical bidding equation:

$$b_{ijt} = \rho p_{2t}^{\circ} + \beta \left| \frac{q_{it}}{DR'_{it}} \right| + \theta^{s} \left| \frac{w_{it}}{DR'_{it}} \right| I_{t}^{s} + \alpha_{ij} + \gamma_{t} + \epsilon_{ijt}$$

where p_{2t}^{s} is the predicted spot price, and l_{t}^{s} is an indicator for pricing rule, s = FIP I, FIT, FIP II. Slopes Residual Demands

	2SLS					
	(1)	(2)	(3)	(4)		
\hat{p}_{2t}	0.75***	0.84***	0.91***	0.67***		
	(0.046)	(0.055)	(0.066)	(0.15)		
FiP I $\times \frac{w_{it}}{DR'_{it}}$	3.24	4.82	6.31	7.16		
	(3.74)	(4.20)	(4.73)	(5.71)		
$FiT \times rac{w_{it}}{DR'_{it}}$	-13.4***	-10.8***	-7.48***	-10.1***		
	(3.14)	(2.93)	(2.40)	(3.34)		
FiP II $\times \frac{w_{it}}{DR'_{it}}$	-1.05	-1.52	-1.59	3.86		
	(3.45)	(2.99)	(2.59)	(4.04)		
$\frac{q_{it}}{DR'_{it}}$				2.56** (1.14)		
DoW FE	N	Y	Y	Y		
Hour FE	N	N	Y	Y		
Observations	19,805	19,805	19,805	19,805		

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ ○ ○

24 / 49

Fringe wind firms engage in arbitrage (overselling) only under variable prices – arbitrage effect

Arbitrage by fringe firms

Fringe wind firms engage in arbitrage (overselling) only under variable prices – arbitrage effect

Is overselling by the fringe a good measure of arbitrage?

- Only if it responds to the predicted price premium $\Delta \hat{p}_t$.
- Other reasons: demand and wind forecast errors, outages...

Fringe wind firms engage in arbitrage (overselling) only under variable prices – arbitrage effect

Is overselling by the fringe a good measure of arbitrage?

- Only if it responds to the predicted price premium $\Delta \hat{p}_t$.
- Other reasons: demand and wind forecast errors, outages...

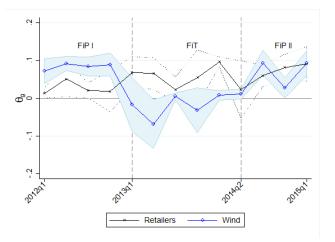
Two alternative control groups: (g = 1, 2)

- Independent retailers: always incentives to arbitrage
- Other renewables under fixed prices: no arbitrage

 Fringe wind firms engage in arbitrage (overselling) only under variable prices – arbitrage effect

Is overselling by the fringe a good measure of arbitrage?

- Only if it responds to the predicted price premium $\Delta \hat{p}_t$.
- Other reasons: demand and wind forecast errors, outages...


Two alternative control groups: (g = 1, 2)

- Independent retailers: always incentives to arbitrage
- Other renewables under fixed prices: no arbitrage

$$\Delta \ln q_{tg} = \alpha + \sum_{Q=1}^{13} \theta_g^Q \Delta \hat{\rho}_t + \gamma D_t^{er} + \delta w_t^{er} + \rho \mathbf{X}_t + \eta_{tg}$$

Response of overselling to predicted price premium

Figure: (1) using retailers as the control group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Arbitrage by fringe firms: Diff-in-Diff

Two subsamples:

- d = 1: Feb 2012-Feb 2013 (includes FiP I \rightarrow FiT)
- d = 2: Feb 2013-Feb 2014 (includes FiT \rightarrow FiP II)

Arbitrage by fringe firms: Diff-in-Diff

Two subsamples:

d = 1: Feb 2012-Feb 2013 (includes FiP I
$$\rightarrow$$
 FiT)

■ d = 2: Feb 2013-Feb 2014 (includes FiT \rightarrow FiP II)

Estimating equation (one for each sample; each control group):

$$\Delta \ln q_t = \alpha + \frac{\beta_1}{l_t^d} W \Delta \hat{p}_t + \beta_2 W \Delta \hat{p}_t + \beta_3 I_t^d W + \beta_4 I_t^d \Delta \hat{p}_{ht} + \beta_5 \Delta \hat{p}_t + \beta_6 W + \beta_7 I_t^d + \rho \mathbf{X}_t + \eta_t$$

- *W* = 1 treated group (Wind)
- $I_t^d = 1$ after regulatory change (I_t^1 : FiTs; I_t^2 : FiPs)
- Treatment effect captured by β_1

Overselling by the fringe (DID estimates)

	Non-wind renewables	Retailers		
	(1)	(2)	(3)	
$\Delta \hat{p} \times \text{Wind} \times \text{FiT}$	-0.071*** (0.0068)	-0.069*** (0.014)		
$\Delta \hat{p} \times$ Wind \times FiP			0.059*** (0.011)	
Observations	41,080	41,080	34,194	

Notes: this shows that wind plants reduced (increased) their arbitrage when moved from variable prices to fixed prices (vice-versa).

Full table

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We have found evidence of:

- **I** Forward contract effect under fixed prices (FiTs)
- 2 Arbitrage effect under variable prices (FiPs)

Our theory model predicts that:

- Both should reduce market power and price discrimination
- Which one dominates? It depends on market structure

We have found evidence of:

- **I** Forward contract effect under fixed prices (FiTs)
- 2 Arbitrage effect under variable prices (FiPs)

Our theory model predicts that:

- Both should reduce market power and price discrimination
- Which one dominates? It depends on market structure

What does the empirical evidence tell us?

Price discrimination across markets

- \blacksquare Factors than enhance market power \rightarrow Price discrimination \uparrow
- Wind reduces price differential more under fixed prices
- Dominant/fringe's wind share reduces the price differential

Price discrimination across markets

- Factors than enhance market power \rightarrow Price discrimination \uparrow
- Wind reduces price differential more under fixed prices
- Dominant/fringe's wind share reduces the price differential

Estimating equation:

$$\Delta p_t = \alpha + \sum_{s=1}^2 \beta_1^s I_t + \beta_2 w_t + \sum_{s=1}^2 \beta_3^s w_t I_t + \alpha_1 D \hat{R}'_{1t} + \alpha_2 D \hat{R}'_{2t} + \gamma \mathbf{X}_t + \epsilon_t$$

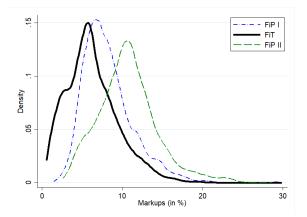
- I_t = FiP I, FiP II (FiT is reference point)
- w_t: dominant/fringe's wind share
- β_1^s : impact of pricing regimes on price discrimination
- β_3^s : impact of market structure across pricing regimes

Price discrimination across markets

	2SLS				
	(1)	(2)	(3)	(4)	
<u>Wdt</u> Wft	-0.6***	-0.5***	-0.6***	-0.5***	
	(0.2)	(0.2)	(0.2)	(0.2)	
FiP I $\times \frac{w_{dt}}{w_{ft}}$	0.4**	0.5**	0.4**	0.5**	
12	(0.2)	(0.2)	(0.2)	(0.2)	
FiP II $\times \frac{w_{dt}}{w_{ft}}$	0.5**	0.4**	0.5***	0.4**	
	(0.2)	(0.2)	(0.2)	(0.2)	
Weekend FE	Ν	Ν	Y	Y	
Peak Hour FE	Ν	Y	Ν	Y	
Observations	25334	25334	25334	25334	

We leverage on our structural estimates to compute day-ahead mark-ups:

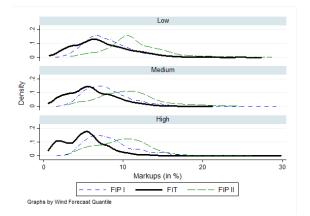
$$\frac{p_{1t} - \hat{p}_{2t}}{p_{1t}} = \left| \frac{\partial DR_{i1t}}{\partial p_{1t}} \right|^{-1} \frac{q_{i1t} - l_t w_{i1}}{p_{1t}}$$


for $I_t = 1$ with fixed (FiTs); $I_t = 0$ with variable prices (FiPs).

 To compute price-cost markups, we use engineering-based marginal costs.

	FiP I		FiT		FiP II	
	Mean	SD	Mean	SD	Mean	SD
Markups (in %) – Simple average						
Day-Ahead (structural)	8.3	(3.3)	6.3	(3.3)	10.7	(3.7)
Overall (engineering)	8.6	(23.1)	8.1	(29.4)	29.7	(14.0)
Markups (in %) – Demand weighted average						
Day-Ahead (structural)	8.3	(3.2)	6.4	(3.3)	10.7	(3.6)
Overall (engineering)	10.0	(22.8)	9.2	(29.6)	30.4	(13.5)
Slope of day-ahead residual de-	524.2	(78.2)	553.6	(120.7)	418.2	(73.0)
mand (in MWh/euros)						

Market power in the day-ahead market


Figure: Distribution of Day-Ahead Markups by Pricing Regime (All Firms)

Notes: This figure plots the distributions of day-ahead markups of all firms by pricing regimes for hours with prices above 25 Euro/MWh.

Market power in the day-ahead market

Figure: Markup Distribution by Amount of Wind and Pricing Regime

Notes: This figure plots the markup distributions for all firms by amount of wind and by the pricing regimes for hours with prices above 25 Euro/MWh.

36 / 49

イロト イポト イヨト イヨト

Conclusions

- **Arbitrage** need not be the most efficient way to reduce price discrimination and mitigate market power
- 2 Addressing market power directly is more efficient
- **S Forward contracts** can play that role

Conclusions

- Arbitrage need not be the most efficient way to reduce price discrimination and mitigate market power
- 2 Addressing market power directly is more efficient
- **S Forward contracts** can play that role
- **Empirical evidence** (Iberian electricity market):
 - Fixed prices: market power \downarrow and overall efficiency \uparrow
 - Variable prices: price discrimination \downarrow

Conclusions

- **Arbitrage** need not be the most efficient way to reduce price discrimination and mitigate market power
- 2 Addressing market power directly is more efficient
- **S** Forward contracts can play that role
- **Empirical evidence** (Iberian electricity market):
 - Fixed prices: market power \downarrow and overall efficiency \uparrow
 - Variable prices: price discrimination \downarrow

Policy relevant for:

- Renewables regulation
- Other sequential markets:
 - e.g. emissions markets in the presence of market power

Thank you!

ENERGYECOLAB

Comments? Questions? natalia.fabra@uc3m.es

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Suppose linear demand D(p) = A - bp

Equilibrium:

$$p_1^B = (2(A - w_f) + bc)/3b$$

$$p_2^B = (A - w_f + 2bc)/3b$$

$$\Delta p^B = ((A - w_f) - bc)/3b$$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

39 / 49

Equilibrium: (Variable prices) • Back

$$p_{1}^{V} = p_{1}^{B} - (k_{f} - w_{f})/3b$$

$$p_{2}^{V} = p_{2}^{B} + (k_{f} - w_{f})/3b$$

$$\Delta p^{V} = \Delta p^{B} - 2(k_{f} - w_{f})/3b$$

Equilibrium: (Variable prices) • Back

$$p_{1}^{V} = p_{1}^{B} - (k_{f} - w_{f})/3b$$

$$p_{2}^{V} = p_{2}^{B} + (k_{f} - w_{f})/3b$$

$$\Delta p^{V} = \Delta p^{B} - 2(k_{f} - w_{f})/3b$$

Equilibrium: (Fixed prices) • Back

$$p_1^F = p_1^B - 2w_d/3b$$
$$p_2^F = p_2^B - w_d/3b$$
$$\Delta p^F = \Delta p^B - w_d/3b$$

Summary of results

Relative to Baseline	Variable prices	Fixed prices
Consumer surplus	?	\uparrow
Efficiency	\downarrow	\uparrow
Discrimination	\downarrow	\downarrow

Relative to Baseline	Variable prices	Fixed prices
Consumer surplus	?	\uparrow
Efficiency	\downarrow	\uparrow
Discrimination	\downarrow	\downarrow

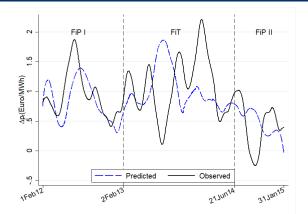
Comparison across pricing rules:

- **Consumer surplus** comparison depends on w_d/w_f
- **Efficiency** is higher with fixed prices
- **Price discrimination** comparison depends on w_d/w_f

Summary Statistics

	FiP I		FiT		FiP II	
	Mean	SD	Mean	SD	Mean	SD
Price Day-ahead	50.2	(13.8)	38.1	(22.2)	52.0	(11.2)
Price Intra-day 1	48.9	(14.2)	37.2	(22.1)	51.7	(11.7)
Price premium	1.2	(5.0)	1.0	(5.6)	0.3	(3.9)
Marginal Cost	47.5	(6.6)	42.3	(7.2)	37.0	(3.8)
Demand Forecast	29.8	(4.8)	28.5	(4.6)	28.1	(4.3)
Wind Forecast	5.7	(3.4)	6.5	(3.6)	5.0	(3.2)
Dominant wind share	0.6	(0.0)	0.7	(0.0)	0.6	(0.0)
Fringe wind share	0.4	(0.0)	0.3	(0.0)	0.4	(0.0)
Dominant non-wind share	0.8	(0.0)	0.8	(0.1)	0.8	(0.1)
Fringe non-wind share	0.2	(0.0)	0.2	(0.1)	0.2	(0.1)

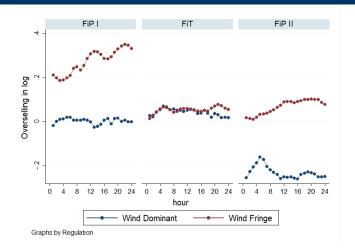
Using quarterly splitted data, we regress:


 $\Delta \ln q_t = \alpha + \beta_2 W \hat{p}_t + \beta_5 \hat{p}_t + \beta_6 W + \gamma D_t^{er} + \delta w_t^{er} + \rho X_t + \eta_t$

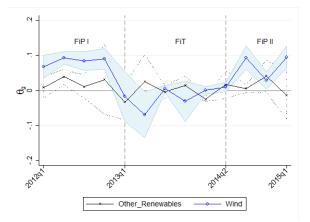
Coefficients of interest:

- **1** β_2 price response to predicted price premium.
- Pre-trends assumption holds when the overselling behavior of treatment and control groups trend similarly when they face similar incentives.

Back


Predicted and observed price premium

Notes: This figure shows locally weighted linear regressions of $\Delta \hat{\rho}_t$ (predicted) and Δp_t (observed) from February 2012 to February 2015.

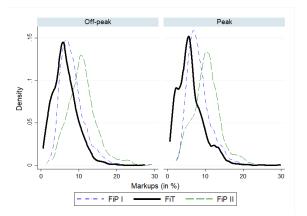

A first look at the data

Back

Response of overselling to predicted price premium

Figure: (2) using non-wind renewables as the control group

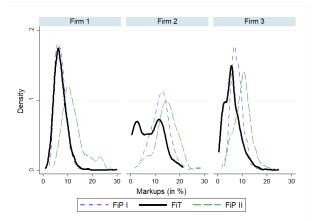
Response of overselling to price premium


	Wind	Non-wind Renewables	Retailers	Diff	
	(1)	(2)	(3)	(1)-(2)	(1)-(3)
FiPI	0.064	0.008	0.079	-0.076	-0.006
	(0.000)	(0.000)	(0.000)	(0.000)	(0.529)
FiT	-0.001	-0.004	0.086	-0.005	0.063
	(0.882)	(0.004)	(0.000)	(0.151)	(0.000)
FiPII	0.032	-0.006	0.053	-0.036	0.004
	(0.000)	(0.000)	(0.000)	(0.000)	(0.503)
FiPI→FiT	-0.065	-0.013	0.008	-0.071	-0.069
	(0.000)	(0.000)	(0.334)	(0.000)	(0.000)
FiT→FiPII	0.026	-0.000	-0.049	0.03	0.059
	(0.000)	(0.812)	(0.000)	(0.000)	(0.000)

Notes: This table reports the coefficient of $\Delta \hat{p_t}$ from 14 different regressions..

Market power in the day-ahead market

Figure: Markup Distribution by Type of Hour and Pricing Regime



Notes: This figure plots the markup distributions for all firms by peak vs. off-peak hours and by the pricing regimes for hours with prices above 25 Euro/MWh.

Market power in the day-ahead market

Figure: Markup Distribution by Firm and Pricing Regime

Notes: This figure plots the markup distributions for each of the dominant firms by their pricing regimes for hours with prices above 25 Euro/MWh.

Peak vs. off-peak markups