ENERGYECOLAB

Market Power and Price Discrimination: Learning from Changes in Renewables Regulation

Imperial College (London), March 2020

Natalia Fabra and Imelda Universidad Carlos III de Madrid

Price discrimination is widespread:

• Often seen as: the outcome of market power + unfair

Price discrimination is widespread:

• Often seen as: the outcome of market power + unfair

Policy options to mitigate price discrimination:

- Promote arbitrage: parallel trade, virtual bidding...
- 2 Reduce market power: forward contracts, divestitures...

Price discrimination is widespread:

• Often seen as: the outcome of market power + unfair

Policy options to mitigate price discrimination:

- **1** Promote **arbitrage**: parallel trade, virtual bidding...
- 2 Reduce market power: forward contracts, divestitures...

This Paper: Welfare implications of these options?

Price discrimination is widespread:

Often seen as: the outcome of market power + unfair

Policy options to mitigate price discrimination:

- Promote arbitrage: parallel trade, virtual bidding...
- 2 Reduce market power: forward contracts, divestitures...

This Paper: Welfare implications of these options?

1 Arbitrage:

price in strong market $\downarrow \downarrow +$ price in weak market $\uparrow =$ price discrimination \downarrow , but welfare?

Price discrimination is widespread:

Often seen as: the outcome of market power + unfair

Policy options to mitigate price discrimination:

- Promote arbitrage: parallel trade, virtual bidding...
- 2 Reduce market power: forward contracts, divestitures...

This Paper: Welfare implications of these options?

Arbitrage:

price in strong market $\downarrow \downarrow +$ price in weak market $\uparrow =$ price discrimination \downarrow , but welfare?

2 Reduce market power:

price in strong market $\downarrow \downarrow +$ price in weak market $\downarrow =$ price discrimination \downarrow , and welfare \uparrow

Electricity markets are typically organized as **sequential markets**: **day-ahead and real time markets**

- Evidence of forward premia (Longstaff et al., JF 2004)
- Consistent with market power (Ito and Reguant, AER 2016)

Electricity markets are typically organized as **sequential markets**: **day-ahead and real time markets**

- Evidence of forward premia (Longstaff et al., JF 2004)
- Consistent with market power (Ito and Reguant, AER 2016)

Related policy debates:

- **1** Should virtual bidding be allowed to promote arbitrage?
- 2 How should renewables be paid?
 - Key question for the energy transition!
 - EUs 2030 climate target will require 260 billion per year, a fraction of which will finance need investment in renewables to achieve 32% of of final energy consumption.

Paying for Renewables

Most commonly used pricing schemes:

- **Feed-in-Premia** (FiP): market prices + fixed premium
 - This encompasses ROCs, RPS, tax credits...
- **Feed-in-Tariffs** (FiT): fixed prices
 - Acts like a forward contract (Allaz and Villa, JET 1993)

Paying for Renewables

Most commonly used pricing schemes:

- **Feed-in-Premia** (FiP): market prices + fixed premium
 - This encompasses ROCs, RPS, tax credits...
- **Feed-in-Tariffs** (FiT): fixed prices
 - Acts like a forward contract (Allaz and Villa, JET 1993)

Policy debate mainly focuses on the impacts on investment

Paying for Renewables

Most commonly used pricing schemes:

- **Feed-in-Premia** (FiP): market prices + fixed premium
 - This encompasses ROCs, RPS, tax credits...
- Feed-in-Tariffs (FiT): fixed prices
 - Acts like a forward contract (Allaz and Villa, JET 1993)

Policy debate mainly focuses on the impacts on investment

This paper:

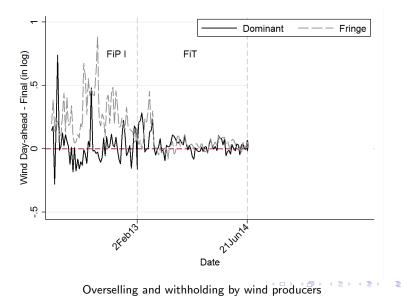
For given capacities,

what are the market impacts of renewables regulation?

Market Impacts of Renewables Regulation

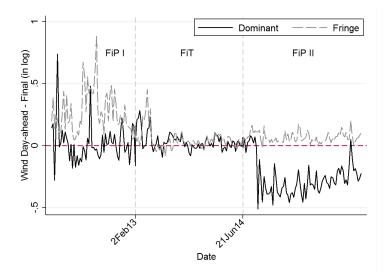
Ito and Reguant (2016):

- Under market prices: wind firms arbitrage price differences
- This reduces price discrimination
- Under fixed prices: wind firms stop arbitraging


Ito and Reguant (2016):

- Under market prices: wind firms arbitrage price differences
- This reduces price discrimination
- Under fixed prices: wind firms stop arbitraging

This Paper:


- Provides further evidence confirming the above results
- Uncovers the forward-contract effect of fixed prices (FiTs):
 - Dominant firms exercise less market power
 - Price discrimination reduced, despite weakening arbitrage

A First Look at the Data

6/47

A First Look at the Data

Overselling and withholding across markets by wind producers $a \to a \to a$

7 / 47

Roadmap

- Related literature
- Theoretical analysis
- Institutional background
- Empirical analysis
 - Pricing incentives in the day-ahead market

イロト 不同下 イヨト イヨト

3

8 / 47

- Price discrimination across markets
- Arbitrage across markets
- Mark-ups in the day-ahead market

Conclusions

Related Literature

1 Forward contracting and market power:

- Allaz and Villa (JET, 1993)
- Bushnell et al. (AER, 2008); Wolak (IEJ, 2000)

2 Welfare effects of price discrimination:

Aguirre et al. (AER, 2010)

- **8** Price arbitrage in electricity markets:
 - Ito and Reguant (AER, 2016)
 - Borenstein, Bushnell, Knittel and Wolfram (JIE, 2008); Jha and Wolak (2019); Mercadal (2019)

4 Pricing schemes for renewables:

Dressler (EE, 2016); Bohland and Schwenen (2019)

Theoretical Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Sequential markets: day-ahead and real-time markets, m = 1, 2

Demand A is inelastically bought in day-ahead market

Firms:

Dominant firm (d) and fringe firms (f)

Technologies:

- Wind: zero marginal costs; availability $w_i \leq k_i$, i = d, f
- Conventional: marginal costs c for dominant; q/b for fringe

Technology Ownership:

- Fringe firms own either wind or conventional technologies
- Dominant firm owns both

Baseline (Ito and Reguant, 2016)

- **1** Wind producers are exposed to **variable prices**
- 2 Must sell all output day-ahead (no arbitrage)

Baseline (Ito and Reguant, 2016)

- **1** Wind producers are exposed to **variable prices**
- Must sell all output day-ahead (no arbitrage)
- Demands faced by the monopolist:

$$D_1(p_1) = A - bp$$

$$D_2(p_1, p_2) = (p_1 - p_2) b$$

Spot market:

$$p_{2}^{*}\left(p_{1}
ight) = rg\max\left[p_{2}q_{2} - c\left(q_{1} + q_{2} - w_{d}
ight)
ight]$$

イロト 不同下 イヨト イヨト

12/47

Baseline (Ito and Reguant, 2016)

- 1 Wind producers are exposed to variable prices
- Must sell all output day-ahead (no arbitrage)
- Demands faced by the monopolist:

$$D_1(p_1) = A - bp$$

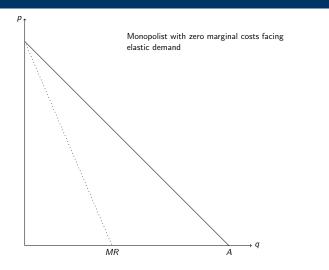
$$D_2(p_1, p_2) = (p_1 - p_2) b$$

Spot market:

$$p_{2}^{*}\left(p_{1}
ight) = rg \max\left[p_{2}q_{2} - c\left(q_{1} + q_{2} - w_{d}
ight)
ight]$$

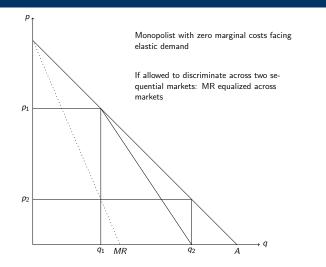
Day-ahead market:

$$p_1^* = \arg \max \left[p_1 q_1 + p_2^* q_2^* - c \left(q_1 + q_2^* - w_d \right) \right]$$


Equilibrium, for
$$\beta = (3b)^{-1} > 0$$
:

$$p_1^B = 2\beta \left(A - w_f\right) > p_2^B = \beta \left(A - w_f\right)$$

Properties of the equilibrium:


- Positive price premium: $p_1^B > p_2^B > 0$
- Wind w_f reduces prices in both markets
- Price premium increasing in $A w_f$ and decreasing in b

Baseline

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙

Baseline

- **1** Wind producers receive variable prices + fixed premium
- 2 They are allowed to arbitrage their idle capacity

- Wind producers receive variable prices + fixed premium
- 2 They are allowed to arbitrage their idle capacity

Lower day-ahead demand $-k_f$, higher spot demand $(k_f - w_f)$:

$$D_1(p_1) = A - bp - k_f$$

$$D_2(p_1, p_2) = (p_1 - p_2) b + (k_f - w_f)$$

- **Wind producers receive variable prices** + fixed premium
- 2 They are allowed to arbitrage their idle capacity

Lower day-ahead demand $-k_f$, higher spot demand $(k_f - w_f)$:

$$D_1(p_1) = A - bp - k_f$$

$$D_2(p_1, p_2) = (p_1 - p_2) b + (k_f - w_f)$$

Otherwise, same profit maximization problem as in baseline:

$$p_{2}^{*}(p_{1}) = \arg \max \left[p_{2}q_{2} - c \left(q_{1} + q_{2} - w_{d} \right) \right],$$

$$p_{1}^{*} = \arg \max \left[p_{1}q_{1} + p_{2}^{*}q_{2}^{*} - c \left(q_{1} + q_{2}^{*} - w_{d} \right) + \overline{\rho}w_{d} \right]$$

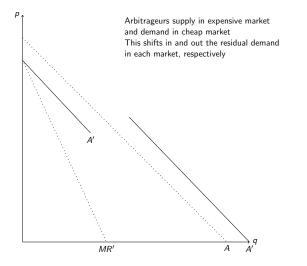
$$(a) \quad (a) \quad (b) \quad (c) \quad$$

Equilibrium

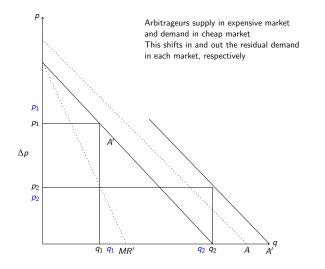
$$p_{1}^{P} = p_{1}^{B} - \beta (k_{f} - w_{f})$$

$$p_{2}^{P} = p_{2}^{B} + \beta (k_{f} - w_{f})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで


16 / 47

Equilibrium


$$p_1^P = p_1^B - \beta (k_f - w_f)$$

$$p_2^P = p_2^B + \beta (k_f - w_f)$$

The **arbitrage effect** is captured by $\pm \beta (k_f - w_f)$:

- Fringe oversells $(k_f w_f)$ in the day-ahead market $ightarrow p_1^P \downarrow$
- Fringe buys $(k_f w_f)$ in the spot market $ightarrow p_2^P \uparrow$
- Arbitrage lowers the prime premium $\Delta p^P \downarrow$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ����

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 Wind producers receive fixed prices

2 No incentives to arbitrage, even if allowed

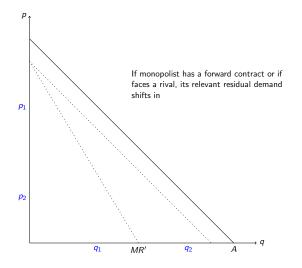
Fixed prices (FiTs)

- Wind producers receive fixed prices
- 2 No incentives to arbitrage, even if allowed
- \blacksquare No arbitrage \rightarrow **Demands** as in baseline
- No arbitrage → **Spot market price** as in baseline

Fixed prices (FiTs)

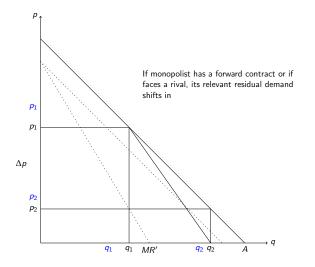
- Wind producers receive fixed prices
- 2 No incentives to arbitrage, even if allowed
- \blacksquare No arbitrage \rightarrow **Demands** as in baseline
- No arbitrage → **Spot market price** as in baseline
- **Day-ahead market**: *w*_d does not receive *p*₁

$$p_1^* = \arg\max\left[p_1\left(q_1 - w_d\right) + p_2^*q_2^* - c\left(q_1 + q_2^* - w_d\right) + \overline{p}w_d\right]$$


Equilibrium

$$p_1^T = p_1^B - 2\beta w_d$$
$$p_2^T = p_2^B - \beta w_d$$

The forward contract effect is captured by $-2\beta w_d$:


- **Dominant firm exerts less market power day-ahead** $\rightarrow p_1^T \downarrow$
- This lower price is passed on to the real-time market $ightarrow p_2^{\mathcal{T}}\downarrow$
- **–** Reduced market power lowers the prime premium $\Delta p^T \downarrow$

Fixed prices (FiTs)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Fixed prices (FiTs)

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日</td>20/47

Summary of Results

	Variable prices	Fixed prices
<i>p</i> 1	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow$
p ₂	1	Ļ
Δp	\downarrow	\downarrow
Channel	Arbitrage	Forward contract

- p_1 , p_2 **Consumer surplus** comparison depends on w_d/w_f
 - p2 Total welfare is higher with fixed prices
 - Δp **Price discrimination** comparison depends on w_d/w_f

1 Price-setting incentives in the day-ahead market:

Forward contract effect under fixed, not under variables prices

1 Price-setting incentives in the day-ahead market:

Forward contract effect under fixed, not under variables prices

・ロト ・回ト ・ヨト ・ヨト

22 / 47

2 Arbitrage by fringe firms across markets:

Arbitrage effect under variable, not under fixed prices

1 Price-setting incentives in the day-ahead market:

- Forward contract effect under fixed, not under variables prices
- 2 Arbitrage by fringe firms across markets:
 - Arbitrage effect under variable, not under fixed prices
- 8 Price discrimination across markets:
 - Comparison btw fixed and variable prices could go either way
 - Market power should enlarge Δp
 - Wind reduces (increases) Δp under fixed (variables) prices

1 Price-setting incentives in the day-ahead market:

- Forward contract effect under fixed, not under variables prices
- 2 Arbitrage by fringe firms across markets:
 - Arbitrage effect under variable, not under fixed prices

8 Price discrimination across markets:

- Comparison btw fixed and variable prices could go either way
- Market power should enlarge Δp
- Wind reduces (increases) Δp under fixed (variables) prices

4 Market power in the day-ahead market:

Comparison btw fixed and variable prices could go either way

Institutional Setting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Spanish electricity market

Market design and market structure:

- Day-ahead market + intra-day markets + balancing markets
- Mix of dominant and fringe firms
- Mix of vertically integrated and stand-alone firms
- Mix of various technologies

The Spanish electricity market

Market design and market structure:

- Day-ahead market + intra-day markets + balancing markets
- Mix of dominant and fringe firms
- Mix of vertically integrated and stand-alone firms
- Mix of various technologies

Rich data:

- Sample: 2012-2015
- Detailed bid data at the unit level, including data on:
 - net positions of vertically integrated companies
 - bilateral contracts
- Hourly data on equilibrium outcomes
- Detailed data on marginal costs at plant level

Summary Statistics

	FiP I		FiT		FiP II	
	Mean	SD	Mean	SD	Mean	SD
Price DA	50.2	(13.8)	38.1	(22.2)	52.0	(11.2)
Price ID 1	48.9	(14.2)	37.2	(22.1)	51.7	(11.7)
Price premium	1.2	(5.0)	1.0	(5.6)	0.3	(3.9)
Marginal Cost	47.5	(6.6)	42.3	(7.2)	37.0	(3.8)
Demand Forecast	29.8	(4.8)	28.5	(4.6)	28.1	(4.3)
Wind Forecast	5.7	(3.4)	6.5	(3.6)	5.0	(3.2)
Dominant wind share	0.6	(0.0)	0.7	(0.0)	0.6	(0.0)
Fringe wind share	0.4	(0.0)	0.3	(0.0)	0.4	(0.0)
Dominant non-wind share	0.8	(0.0)	0.8	(0.1)	0.8	(0.1)
Fringe non-wind share	0.2	(0.0)	0.2	(0.1)	0.2	(0.1)

The Empirical Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 Dominant firms do not internalize the effects of price increases on wind output under fixed prices (FiTs) – forward-contract effect

 Dominant firms do not internalize the effects of price increases on wind output under fixed prices (FiTs) – forward-contract effect

Profit maximization in day-ahead market:

$$p = c_i + \left|\frac{\partial DR_i}{\partial p}\right|^{-1} (q_i - I_t w_i)$$

where $I_t = 1$ with fixed prices and $I_t = 0$ with variable prices.

 Dominant firms do not internalize the effects of price increases on wind output under fixed prices (FiTs) – forward-contract effect

Profit maximization in day-ahead market:

$$p = c_i + \left|\frac{\partial DR_i}{\partial p}\right|^{-1} (q_i - I_t w_i)$$

where $I_t = 1$ with fixed prices and $I_t = 0$ with variable prices.

Empirical bidding equation:

$$b_{ijt} = \rho c_{ijt} + \beta \left| \frac{q_{it}}{DR'_{it}} \right| + \theta \left| \frac{w_{it}}{DR'_{it}} \right| I_t^s + \alpha_{ij} + \gamma_t + \epsilon_{ijt},$$

	2SLS					
	(1)	(2)	(3)	(4)		
Marginal Cost _{it}	0.72*	0.79***	0.85***	0.63**		
	(0.38)	(0.25)	(0.26)	(0.29)		
FiP I $\times \frac{w_{it}}{DR'_{it}}$	0.63	-6.43	-7.26	-8.84*		
	(6.82)	(4.68)	(4.68)	(4.95)		
$FiT \times rac{w_{it}}{DR'_{it}}$	-32.5***	-26.2***	-27.4***	-18.4***		
	(8.56)	(7.19)	(7.03)	(6.71)		
FiP II $\times \frac{w_{it}}{DR'_{it}}$	-0.78	0.69	-0.92	2.45		
	(9.45)	(7.41)	(7.58)	(6.34)		
$\frac{q_{it}}{DR'_{it}}$				3.61** (1.42)		
Month and DoW FE	Ν	Y	Y	Y		
Hour FE	N	N	Y	Y		
Observations	20,100	20,100	20,100	20,100		

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

28 / 47

Arbitrage by fringe firms

Fringe wind firms engage in arbitrage only under variable prices (FiPs) – arbitrage effect

Does overselling respond to the predicted price premium?

$$\Delta \ln q_{tg} = \alpha + \theta_g \Delta \hat{p}_t + \gamma D_t^{er} + \delta w_t^{er} + \rho \mathbf{X}_t + \eta_{tg}$$

Overselling captured by overselling Δlnq_{tg}, could be due to:
 Arbitrage: if θ > 0, it responds to price premium.

Does overselling respond to the predicted price premium?

$$\Delta \ln q_{tg} = \alpha + \theta_g \Delta \hat{p}_t + \gamma D_t^{er} + \delta w_t^{er} + \rho \mathbf{X}_t + \eta_{tg}$$

• Overselling captured by **overselling** $\Delta \ln q_{tg}$, could be due to:

- Arbitrage: if $\theta > 0$, it responds to price premium.
- Other factors: demand and wind forecast errors, outages...

Does overselling respond to the predicted price premium?

$$\Delta \ln q_{tg} = \alpha + \theta_g \Delta \hat{p}_t + \gamma D_t^{er} + \delta w_t^{er} + \rho \mathbf{X}_t + \eta_{tg}$$

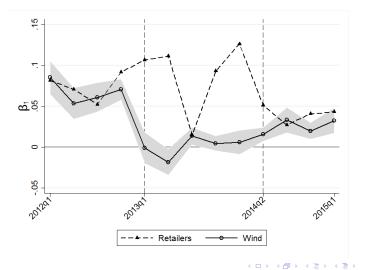
• Overselling captured by **overselling** $\Delta \ln q_{tg}$, could be due to:

- Arbitrage: if $\theta > 0$, it responds to price premium.
- Other factors: demand and wind forecast errors, outages...

Does overselling respond to the predicted price premium?

$$\Delta \ln q_{tg} = \alpha + \theta_g \Delta \hat{p}_t + \gamma D_t^{er} + \delta w_t^{er} + \rho \mathbf{X}_t + \eta_{tg}$$

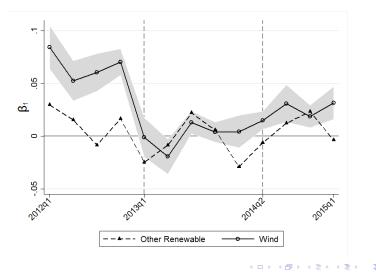
• Overselling captured by **overselling** $\Delta \ln q_{tg}$, could be due to:


- Arbitrage: if $\theta > 0$, it responds to price premium.
- Other factors: demand and wind forecast errors, outages...

Two alternative control groups: (g = 1, 2)

- Retailers: always incentives to arbitrage
- Other renewables under FiTs: no incentives to arbitrage

Response of overselling to price premium


Figure: (1) using retailers as the control group

30 / 47

Response of overselling to price premium

Figure: (2) using other renewable units as the control group

31 / 47

Arbitrage by fringe firms: Diff-in-Diff

Two subsamples:

- d = 1: Feb 2012-Feb 2013 (includes FiP I \rightarrow FiT)
- d = 2: Feb 2013-Feb 2014 (includes FiT \rightarrow FiP II)

Arbitrage by fringe firms: Diff-in-Diff

Two subsamples:

- d = 1: Feb 2012-Feb 2013 (includes FiP I \rightarrow FiT)
- d = 2: Feb 2013-Feb 2014 (includes FiT \rightarrow FiP II)

Estimating equation (one for each sample; each control group):

$$\Delta \ln q_t = \alpha + \beta_1 W R_t^d \Delta \hat{p}_t + \beta_2 W \Delta \hat{p}_t + \beta_3 W R_t^d + \beta_4 R_t^d \Delta \hat{p}_{ht} + \beta_5 \Delta \hat{p}_t + \beta_6 W + \beta_7 R_t^d + \rho \mathbf{X}_t + \eta_t$$

- W = 1 treated group (Wind)
- $R_t^d = 1$ after regulatory change (R_t^1 : FiTs; R_t^2 : FiPs)
- **Treatment effect captured by** β_1

▶ Pre-trend

Overselling by the fringe (DID estimates)

	Non-wind renewables	Reta	ilers
	(1)	(2)	(3)
$\Delta \hat{p} \times \text{Wind} \times \text{FiT}$	-0.071***	-0.069***	
	(0.0068)	(0.014)	
$\Delta \hat{p} \times \text{Wind} \times \text{FiP}$			0.059***
			(0.011)
Observations	41,080	41,080	34,194

casted price premium.

▶ Full table

Price Discrimination Across Markets

Predictions:

- \blacksquare Factors than enhance market power o Price discrimination \uparrow
- 2 Wind reduces price differential more under fixed prices
- 3 Dominant/fringe's wind reduces the price differential

Price Discrimination Across Markets

Predictions:

- ${f 1}$ Factors than enhance market power ightarrow Price discrimination \uparrow
- 2 Wind reduces price differential more under fixed prices
- 3 Dominant/fringe's wind reduces the price differential

Estimating equation:

$$\Delta \boldsymbol{p}_t = \boldsymbol{\alpha} + \beta_1 \boldsymbol{w}_t \boldsymbol{I}_t^s + \beta_2 \boldsymbol{w}_t + \beta_3 \boldsymbol{I}_t^s + \alpha_1 D \boldsymbol{R}_{1t}' + \alpha_2 D \boldsymbol{R}_{2t}' + \gamma \boldsymbol{X}_t + \boldsymbol{\epsilon}_t$$

- I_t^s = FiP I, FiP II (FiT is reference point)
- β_1 : impact of wind across pricing regimes
- Two measures: wind forecast; dominant/fringe's wind

Price discrimination across markets

		25	LS	
	(1)	(2)	(3)	(4)
Wind Forecast (GWh)	-0.1*** (0.03)	()	(-)	()
FiP I \times Wind Forecast (GWh)	0.2*** (0.03)			
FiP II \times Wind Forecast (GWh)	0.1*** (0.03)			
w _{dt} w _{ft}		-0.5*** (0.1)	-0.7*** (0.1)	-0.4*** (0.1)
$FiP \ I \ \times \ \tfrac{w_{dt}}{w_{ft}}$		0.9*** (0.2)	0.4* (0.2)	0.7*** (0.2)
FiP II $\times \frac{w_{dt}}{w_{ft}}$		0.7*** (0.2)	0.7*** (0.2)	0.7*** (0.2)
DoW FE	Y	Y	Ν	Y
Year X Month FE	Ν	Y	Ν	Y
Week FE	Ν	Ν	Y	Y
Observations	25,334	25,334	25,334	25,334

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - わへで

35 / 47

We have found evidence of:

- **Forward contract effect** under fixed prices (FiTs)
- Arbitrage effect under variable prices (FiPs)

Our model predicts that their weight depends on market structure

We have found evidence of:

- **Forward contract effect** under fixed prices (FiTs)
- Arbitrage effect under variable prices (FiPs)

Our model predicts that their weight depends on market structure

What does the evidence tell us?

• We leverage on structural estimates to **compute mark-ups**:

$$\frac{p-c_i}{p} = \left|\frac{\partial DR_i}{\partial p}\right|^{-1} \frac{q_i - l_t w_i}{p}$$

for $I_t = 1$ with fixed (FiTs); $I_t = 0$ with variable prices (FiPs).

	FiP I		FiT		FiP II		
	Mean (%)	SD	Mean (%)	SD	Mean (%)	SD	
All	8.3	(3.3)	6.3	(3.3)	10.9	(3.7)	
Firm 1	7.0	(2.2)	7.0	(2.6)	11.9	(4.4)	
Firm 2	12.3	(4.1)	8.2	(5.1)	14.4	(4.6)	
Firm 3	7.7	(2.3)	6.0	(3.3)	10.5	(3.4)	

Table: Average Markups on Day-ahead Market

Notes: Simple average of markups using structural estimates.

Conclusions

- Arbitrage need not be the most efficient way to reduce price discrimination and mitigate market power
- 2 Addressing market power directly might be more efficient

Conclusions

- Arbitrage need not be the most efficient way to reduce price discrimination and mitigate market power
- 2 Addressing market power directly might be more efficient
- **Empirical evidence** (Spanish electricity market):
 - FiTs mitigated market power and price discrimination
 - FiPs increased arbitrage but led to more market power

Conclusions

- Arbitrage need not be the most efficient way to reduce price discrimination and mitigate market power
- 2 Addressing market power directly might be more efficient
- **Empirical evidence** (Spanish electricity market):
 - FiTs mitigated market power and price discrimination
 - FiPs increased arbitrage but led to more market power

Work ahead!

 Counterfactual analysis: effects of combining the forward contract and arbitrage effects

Thank you!

ENERGYECOLAB

Comments? Questions? natalia.fabra@uc3m.es

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Contracts-for-Differences

- 1 Payments settled by differences wrt reference price
- 2 Firms exposed to market prices: incentives to arbitrage

- Payments settled by differences wrt reference price
 Firms exposed to market prices: incentives to arbitrage
- A combination of the results under FiTs and FiPs:
 - Arbitrage effect reflected in the residual demands (FiPs):

$$D_{1}\left(p_{1}
ight) = A - bp_{1} - k_{f}$$
 and $D_{2}\left(p_{1}, p_{2}
ight) = \left(p_{1} - p_{2}
ight)b + \left(k_{f} - w_{f}
ight)$

Forward contract effect reflected in day-ahead profit (FiTs): $p_1^* = \arg \max \left[p_1 \left(q_1 - w_d \right) + p_2^* q_2^* - c \left(q_1 + q_2^* - w_d \right) + \overline{p} w_d \right]$

$$p_{1}^{C} = p_{1}^{B} - \beta (2w_{d} + (k_{f} - w_{f}))$$

$$p_{2}^{C} = p_{2}^{B} - \beta (w_{d} - (k_{f} - w_{f}))$$

$$\Delta p^{C} = \Delta p^{B} - \beta (w_{d} + 2 (k_{f} - w_{f}))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

43 / 47

- **Forward contract effect** is captured by $-2\beta w_d$
- Arbitrage effect is captured by $\pm \beta (k_f w_f)$

$$p_{1}^{C} = p_{1}^{B} - \beta (2w_{d} + (k_{f} - w_{f}))$$

$$p_{2}^{C} = p_{2}^{B} - \beta (w_{d} - (k_{f} - w_{f}))$$

$$\Delta p^{C} = \Delta p^{B} - \beta (w_{d} + 2 (k_{f} - w_{f}))$$

43 / 47

- **Forward contract effect** is captured by $-2\beta w_d$
- Arbitrage effect is captured by $\pm \beta (k_f w_f)$
- Day-ahead prices: $p_1^C < p_1^T$ and $p_1^C < p_1^P$

$$p_{1}^{C} = p_{1}^{B} - \beta (2w_{d} + (k_{f} - w_{f}))$$

$$p_{2}^{C} = p_{2}^{B} - \beta (w_{d} - (k_{f} - w_{f}))$$

$$\Delta p^{C} = \Delta p^{B} - \beta (w_{d} + 2 (k_{f} - w_{f}))$$

- **Forward contract effect** is captured by $-2\beta w_d$
- Arbitrage effect is captured by $\pm \beta (k_f w_f)$
- Day-ahead prices: $p_1^{\mathcal{C}} < p_1^{\mathcal{T}}$ and $p_1^{\mathcal{C}} < p_1^{\mathcal{P}}$
- Price premium: $\Delta p^{C} < \Delta p^{T}$ and $\Delta p^{C} < \Delta p^{P}$

$$p_{1}^{C} = p_{1}^{B} - \beta (2w_{d} + (k_{f} - w_{f}))$$

$$p_{2}^{C} = p_{2}^{B} - \beta (w_{d} - (k_{f} - w_{f}))$$

$$\Delta p^{C} = \Delta p^{B} - \beta (w_{d} + 2 (k_{f} - w_{f}))$$

- **Forward contract effect** is captured by $-2\beta w_d$
- Arbitrage effect is captured by $\pm \beta (k_f w_f)$
- Day-ahead prices: $p_1^C < p_1^T$ and $p_1^C < p_1^P$
- Price premium: $\Delta p^{C} < \Delta p^{T}$ and $\Delta p^{C} < \Delta p^{P}$
- Spot prices (efficiency): $p_2^T < p_2^C < p_2^P$

▶ Back

Using quarterly splitted data, we regress:

 $\Delta \ln q_t = \alpha + \beta_2 W \hat{p}_t + \beta_5 \hat{p}_t + \beta_6 W + \gamma D_t^{er} + \delta w_t^{er} + \rho X_t + \eta_t$

Coefficients of interest:

- **1** β_2 price response to predicted price premium.
- Pre-trends assumption holds when the overselling behavior of treatment and control groups trend similarly when they face similar incentives.

Back

DiD estimates (other renewables as control group)

	Pre-trends	FiT	FiP
	(1)	(2)	(3)
Wind	0.05*** (0.01)	0.2*** (0.009)	0.03*** (0.009)
Ŷ	-0.002 (0.002)	-0.002 (0.002)	-0.004** (0.002)
$\hat{\rho} \times$ Wind	-0.004 (0.004)	0.08*** (0.006)	0.005 (0.003)
FiT		0.09*** (0.01)	
$Wind \times FiT$		-0.1*** (0.02)	
$\hat{p} \times FiT$		0.0001 (0.003)	
$\hat{p} \times Wind \times FiT$		-0.08*** (0.007)	
FiP			-0.01 (0.010)
$Wind\timesFiP$			-0.04*** (0.01)
$\hat{p} \times FiP$			-0.003 (0.004)
$\hat{p} \times Wind \times FiP$			0.03*** (0.006)
Control Observations	Renewables 16,900	Renewables 34,478	Renewables 32,780

DiD estimates (retailers as control group)

46 / 47

Response of overselling to price premium

Pricing	Price Response of Group:			Difference in the		
Regimes	Wind	Non-wind	Retailers	Price R	esponse	
	Renewables					
	(1)	(2)	(3)	(1)-(2)	(1)-(3)	
FiPI	0.064	0.008	0.079	-0.076	-0.006	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.529)	
FiT	-0.001	-0.004	0.086	-0.005	0.063	
	(0.882)	(0.004)	(0.000)	(0.151)	(0.000)	
FiPII	0.032	-0.006	0.053	-0.036	0.004	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.503)	
FiPI→FiT	-0.065	-0.013	0.008	-0.071	-0.069	
	(0.000)	(0.000)	(0.334)	(0.000)	(0.000)	
FiT→FiPII	0.026	-0.000	-0.049	. ,	0.059	
	(0.000)	(0.812)	(0.000)		(0.000)	

Notes: This table reports the coefficient of $\Delta \hat{p}_t$ from 14 different regressions similar to equation (??).

